首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods for constructing arbitrary discontinuities within spectral finite elements are described and studied. We use the concept of the eXtended Finite Element Method (XFEM), which introduces the discontinuity through a local partition of unity, so there is no requirement for the mesh to be aligned with the discontinuities. A key aspect of the implementation of this method is the treatment of the blending elements adjacent to the local partition of unity. We found that a partition constructed from spectral functions one order lower than the continuous approximation is optimal and no special treatment is needed for higher order elements. For the quadrature of the Galerkin weak form, since the integrand is discontinuous, we use a strategy of subdividing the discontinuous elements into 6‐ and 10‐node triangles; the order of the element depends on the order of the spectral method for curved discontinuities. Several numerical examples are solved to examine the accuracy of the methods. For straight discontinuities, we achieved the optimal convergence rate of the spectral element. For the curved discontinuity, the convergence rate in the energy norm error is suboptimal. We attribute the suboptimality to the approximations in the quadrature scheme. We also found that modification of the adjacent elements is only needed for lower order spectral elements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
A new level set method is developed for describing surfaces that are frozen behind a moving front, such as cracks. In this formulation, the level set is described in two dimensions by a three‐tuple: the sign of the level set function and the components of the closest point projection to the surface. The update of the level set is constructed by geometric formulas, which are easily implemented. Results are given for growth of lines in two dimensions that show the method is very accurate. The method combines very naturally with the extended finite element method (XFEM) where the discontinuous enrichment for cracks is best described in terms of level set functions. Examples of crack growth simulations obtained by combining this level set method with the extended finite element method are given. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
A minimal remeshing finite element method for crack growth is presented. Discontinuous enrichment functions are added to the finite element approximation to account for the presence of the crack. This method allows the crack to be arbitrarily aligned within the mesh. For severely curved cracks, remeshing may be needed but only away from the crack tip where remeshing is much easier. Results are presented for a wide range of two‐dimensional crack problems showing excellent accuracy. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
An enriched finite element method with arbitrary discontinuities in space–time is presented. The discontinuities are treated by the extended finite element method (X‐FEM), which uses a local partition of unity enrichment to introduce discontinuities along a moving hyper‐surface which is described by level sets. A space–time weak form for conservation laws is developed where the Rankine–Hugoniot jump conditions are natural conditions of the weak form. The method is illustrated in the solution of first order hyperbolic equations and applied to linear first order wave and non‐linear Burgers' equations. By capturing the discontinuity in time as well as space, results are improved over capturing the discontinuity in space alone and the method is remarkably accurate. Implications to standard semi‐discretization X‐FEM formulations are also discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents new three‐dimensional finite elements with embedded strong discontinuities in the small strain infinitesimal range. The goal is to model localized surfaces of failure in solids, such as cracks at fracture, through enhancements of the finite elements that capture the propagating discontinuities of the displacement field in the element interiors. In this way, such surfaces of discontinuity can be sharply resolved in general meshes not necessarily related to the detailed geometry of the surface, unknown a priori. An important issue is also the consideration of general finite element formulations in the developments (e.g., basic displacement‐based, mixed or enhanced assumed strain finite element formulations), as needed to optimally resolve the continuum problem in the bulk. The actual modeling of the discontinuity effects, including the incorporation of the cohesive law defining the discontinuity constitutive response, is carried out at the element level with the proper enhancement of the discrete strain field of the element. The added elemental degrees of freedom approximate the displacement jumps associated with the discontinuity and are defined independently from element to element, thus allowing their static condensation at the element level without affecting the global mechanical problem in terms of the number and topology of the global degrees of freedom. In fact, this global‐local structure of the finite element methods developed in this work arises naturally from a multi‐scale characterization of these localized solutions, with the discontinuities understood to appear in the small scales, thus leading directly to these computationally efficient numerical methods for their numerical resolution, easily incorporated to an existing finite element code. The focus in this paper is on the development of finite elements incorporating a linear interpolation of the displacement jumps in the general three‐dimensional setting. These interpolations are shown to be necessary for hexahedral elements to avoid the so‐called stress locking that occurs with simpler constant approximations of the jumps (namely, a spurious transfer of stresses across the discontinuity not allowing its full release and, hence, resulting in an overstiff or locked numerical solution). The design of the new finite elements is accomplished in this work by a direct identification of the separation modes to be incorporated in the discrete strain field of the element, rather than from an assumed discontinuous interpolation of the displacements, assuring with this approach their locking‐free response by design. An additional issue addressed in the paper is the geometric characterization and propagation of the discontinuity surfaces in the general three‐dimensional setting of interest here. The paper includes a series of numerical simulations illustrating and evaluating the properties of the new finite elements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Nonlinear elastic materials are of great engineering interest, but challenging to model with standard finite elements. The challenges arise because nonlinear elastic materials are characterized by non‐convex stored‐energy functions as a result of their ability to undergo large reversible deformations, are incompressible or nearly incompressible, and often times possess complex microstructures. In this work, we propose and explore an alternative approach to model finite elasticity problems in two dimensions by using polygonal discretizations. We present both lower order displacement‐based and mixed polygonal finite element approximations, the latter of which consist of a piecewise constant pressure field and a linearly‐complete displacement field at the element level. Through numerical studies, the mixed polygonal finite elements are shown to be stable and convergent. For demonstration purposes, we deploy the proposed polygonal discretization to study the nonlinear elastic response of rubber filled with random and periodic distributions of rigid particles, as well as the development of cavitation instabilities in elastomers containing vacuous defects. These physically‐based examples illustrate the potential of polygonal finite elements in studying and modeling nonlinear elastic materials with complex microstructures under finite deformations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
An improvement of a new technique for modelling cracks in the finite element framework is presented. A standard displacement‐based approximation is enriched near a crack by incorporating both discontinuous fields and the near tip asymptotic fields through a partition of unity method. A methodology that constructs the enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the proposed technique. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Within the framework of the first‐order shear deformation theory, 4‐ and 9‐node elements for the analysis of laminated composite plates are derived from the MITC family developed by Bathe and coworkers. To this end the bases of the MITC formulation are illustrated and suitably extended to incorporate the laminate theory. The proposed elements are locking‐free, they do not have zero‐energy modes and provide accurate in‐plane deformations. Two consecutive regularizations of the extensional and flexural strain fields and the correction of the resulting out‐of‐plane stress profiles necessary to enforce exact fulfillment of the boundary conditions are shown to yield very satisfactory results in terms of transverse and normal stresses. The features of the proposed elements are assessed through several numerical examples, either for regular and highly distorted meshes. Comparisons with analytical solutions are also shown. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
An automatic crack propagation modelling technique using polygon elements is presented. A simple algorithm to generate a polygon mesh from a Delaunay triangulated mesh is implemented. The polygon element formulation is constructed from the scaled boundary finite element method (SBFEM), treating each polygon as a SBFEM subdomain and is very efficient in modelling singular stress fields in the vicinity of cracks. Stress intensity factors are computed directly from their definitions without any nodal enrichment functions. An automatic remeshing algorithm capable of handling any n‐sided polygon is developed to accommodate crack propagation. The algorithm is simple yet flexible because remeshing involves minimal changes to the global mesh and is limited to only polygons on the crack paths. The efficiency of the polygon SBFEM in computing accurate stress intensity factors is first demonstrated for a problem with a stationary crack. Four crack propagation benchmarks are then modelled to validate the developed technique and demonstrate its salient features. The predicted crack paths show good agreement with experimental observations and numerical simulations reported in the literature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents new finite elements that incorporate strong discontinuities with linear interpolations of the displacement jumps for the modeling of failure in solids. The cases of interest are characterized by a localized cohesive law along a propagating discontinuity (e.g. a crack), with this propagation occurring in a general finite element mesh without remeshing. Plane problems are considered in the infinitesimal deformation range. The new elements are constructed by enhancing the strains of existing finite elements (including general displacement based, mixed, assumed and enhanced strain elements) with a series of strain modes that depend on the proper enhanced parameters local to the element. These strain modes are designed by identifying the strain fields to be captured exactly, including the rigid body motions of the two parts of a splitting element for a fully softened discontinuity, and the relative stretching of these parts for a linear tangential sliding of the discontinuity. This procedure accounts for the discrete kinematics of the underlying finite element and assures the lack of stress locking in general quadrilateral elements for linearly separating discontinuities, that is, spurious transfers of stresses through the discontinuity are avoided. The equations for the enhanced parameters are constructed by imposing the local equilibrium between the stresses in the bulk of the element and the tractions driving the aforementioned cohesive law, with the proper equilibrium operators to account for the linear kinematics of the discontinuity. Given the locality of all these considerations, the enhanced parameters can be eliminated by their static condensation at the element level, resulting in an efficient implementation of the resulting methods and involving minor modifications of an existing finite element code. A series of numerical tests and more general representative numerical simulations are presented to illustrate the performance of the new elements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
12.
We study the accuracy and reliability of the lowest‐order bilinear shell finite element schemes. Our approach is based mainly on a simplified shallow shell model analogous to the Reissner–Mindlin model of plate bending. The numerical models are constructed by modifying the strain expressions within the usual energy principle so that error analysis in the energy norm framework is possible. Our theoretical predictions supported by numerical experiments indicate that the performance of the low‐order methods is both mesh and case dependent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A methodology to connect two or more non-conforming meshes generated from a geometric model is presented. The problem leads to a variational problem subject to constraints. The emphasis of the work is on constraints construction. Two methods, namely, discrete connection and continuous connection, are developed. The relation with hybrid formulations is considered and two application examples are presented.  相似文献   

14.
We present a method to reduce mesh bias in dynamic fracture simulations using the finite element method with adaptive insertion of extrinsic cohesive zone elements along element boundaries. The geometry of the domain discretization is important in this setting because cracks are only allowed to propagate along element facets and can potentially bias the crack paths. To reduce mesh bias, we consider unstructured polygonal finite elements in this work. The meshes are generated with centroidal Voronoi tessellations to ensure element quality. However, the possible crack directions at each node are limited, making this discretization a poor candidate for dynamic fracture simulation. To overcome this problem, and significantly improve crack patterns, we propose adaptive element splitting, whereby the number of potential crack directions is increased at each crack tip. Thus, the crack is allowed to propagate through the polygonal element. Geometric studies illustrate the benefits of polygonal element discretizations employed with element splitting over other structured and unstructured discretizations for crack propagation applications. Numerical examples are performed and demonstrate good agreement with previous experimental and numerical results in the literature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we present a family of mixed finite elements, which are suitable for the discretization of slim domains. The displacement space is chosen as Nédélec's space of tangential continuous elements, whereas the stress is approximated by normal–normal continuous symmetric tensor‐valued finite elements. We show stability of the system on a slim domain discretized by a tensor product mesh, where the constant of stability does not depend on the aspect ratio of the discretization. We give interpolation operators for the finite element spaces, and thereby obtain optimal order a priori error estimates for the approximate solution. All estimates are independent of the aspect ratio of the finite elements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
New methods for the analysis of failure by multiscale methods that invoke unit cells to obtain the subscale response are described. These methods, called multiscale aggregating discontinuities, are based on the concept of ‘perforated’ unit cells, which exclude subdomains that are unstable, i.e. exhibit loss of material stability. Using this concept, it is possible to compute an equivalent discontinuity at the coarser scale, including both the direction of the discontinuity and the magnitude of the jump. These variables are then passed to the coarse‐scale model along with the stress in the unit cell. The discontinuity is injected at the coarser scale by the extended finite element method. Analysis of the procedure shows that the method is consistent in power and yields a bulk stress–strain response that is stable. Applications of this procedure to crack growth in heterogeneous materials are given. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The coupling of Finite Element Method (FEM) with a Boundary Element Method (BEM) is a desirable result that exploits the advantages of each. This paper examines the efficient symmetric coupling of a Symmetric Galerkin Multi‐zone Curved Boundary Element Analysis method with a Finite Element Method for 2‐D elastic problems. Existing collocation based multi‐zone boundary element methods are not symmetric. Thus, when they are coupled with FEM, it is very difficult to achieve symmetry, increasing the computational work to solve the problem. This paper uses a fully Symmetric curved Multi‐zone Galerkin Boundary Element Approach that is coupled to an FEM in a completely symmetric fashion. The symmetry is achieved by symmetrically converting the boundary zones into equivalent ‘macro finite elements’, that are symmetric, so that symmetry in the coupling is retained. This computationally efficient and fast approach can be used to solve a wide range of problems, although only 2‐D elastic problems are shown. Three elasticity problems, including one from the FEM‐BEM literature that explore the efficacy of the approach are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
19.
A comparison is made between Arbitrary Lagrangian–Eulerian (ALE) finite element formulations for simulation of forming processes based on an artificial dissipation scheme and a limited flux scheme. The first ALE algorithm is based on an averaging procedure used in post-processing of finite element calculations. The second ALE algorithm stems from a finite difference method for compressible fluid dynamics. Both approaches have complementary characteristics with respect to accuracy and implementation. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
The literature shows an increasing number of works focused on investigating the behaviour of methods that uses concepts of control volumes in the solution of structural problems. In recent years, new approaches using unstructured meshes have been proposed, most of which addressing new applications and, to a lesser extent, the underling physical perspective. This paper presents a unified approach to the element‐based finite volume method and FEM‐Galerkin within the framework of the finite element space. Numerical examples highlight some accuracy issues associated with the element‐based finite volume method developed in this work. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号