首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This article demonstrates that the molecular weight of propylene homopolymer decreases with time, and that the molecular weight distribution (MWD) narrows when a highly active MgCl2‐supported catalyst is used in a liquid pool polymerization at constant H2 concentration and temperature. To track the change in molecular weight and its distribution during polymerization, small portions of homo polymer samples were taken during the reaction. These samples were analyzed by Cross Fractionation Chromatograph (CFC), and the resulting data were treated with a three‐site model. These analyses clearly showed that the high molecular weight fraction of the distribution decreases as a function of time. At the same time, the MWD narrows because the weight‐average molecular weight decreases faster than the number‐average molecular weight. A probable mechanism based on the reaction of an external donor with AlEt3 is proposed to explain these phenomena. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1035–1047, 2001  相似文献   

2.
For the preparation of high‐molecular‐weight (HMW) poly(N‐vinylcarbazole) (PVCZ) with a narrow molecular weight distribution, N‐vinylcarbazole (VCZ) was solution‐polymerized in 1,1,2,2‐tetrachloroethane (TCE) at ?20, 0, and 20°C with photoinitiation. The effects of the polymerization temperature and the concentrations of the polymerization solvent and photoinitiator on the polymerization behavior and molecular parameters of PVCZ were investigated. A low polymerization temperature with photoirradiation was successful in obtaining HMW PVCZ with a smaller temperature rise during polymerization than that for thermal free‐radical polymerization by azobisisobutyronitrile (AIBN). The photo‐solution‐polymerization rate of VCZ in TCE was proportional to [AIBN]0.45. The molecular weight was higher and the molecular weight distribution was narrower for PVCZ made at lower temperatures. For PVCZ prepared in TCE at ?20°C with a photoinitiator concentration of 0.00003 mol/mol of VCZ, a weight‐average molecular weight of 920,000 was obtained, with a polydispersity index of 1.46, and the degree of transparency converged to about 99%. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2391–2396, 2003  相似文献   

3.
A novel MgCl2/SiO2‐supported Ziegler–Natta catalyst was prepared using a new one‐pot ball milling method. Using this catalyst, polyethylenes with different molecular weight distributions were synthesized. The effects of the [Si]/[Mg] ratio, polymerization temperature and [Al]/[Ti] ratio on the catalytic activity, the kinetic behaviour and the molecular weight and the polydispersity of the resultant polymer were studied. It was found that the polydispersity index of the polymer could be adjusted over a wide range of 5–30 through regulating the [Si]/[Mg] ratio and polymerization temperature, and especially when the [Si]/[Mg] ratio was 1.70, the polydispersity index could reach over 25. This novel bi‐supported Ziegler–Natta catalyst is thus useful for preparing polyethylene with a required molecular weight distribution using current equipment and technological processes. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
A coupled‐single‐particle and Monte Carlo model was used to simulate propylene polymerization. To describe the effects of intraparticle transfer resistance on the polymerization kinetics, the polymeric multilayer model (PMLM) was applied. The reaction in each layer of the PMLM was described with the Monte Carlo method. The PMLM was solved together with the Monte Carlo model. Therefore, the model included the factors of the mass‐ and heat‐transfer resistance as well as the stochastic collision nature of the polymerization catalyzed with single‐site‐type/multiple‐site‐type catalysts. The model presented results such as the polymerization dynamics, the physical diffusion effect, and the polymer molecular weight and its distribution. The simulation data were compared with the experimental/actual data and the simulation results from the uniform Monte Carlo model. The results showed that the model was more accurate and offered deeper insight into propylene polymerization within such a microscopic reaction–diffusion system. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Well‐defined polydimethylsiloxane‐block‐polystyrene (PDMS‐b‐PS) diblock copolymers were prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization using a functional PDMS‐macro RAFT agent. The RAFT polymerization kinetics was simulated by a mathematical model for the RAFT polymerization in a batch reactor based on the method of moments. The model described molecular weight, monomer conversion, and polydispersity index as a function of polymerization time. Good agreements in the polymerization kinetics were achieved for fitting the kinetic profiles with the developed model. In addition, the model was used to predict the effects of initiator concentration, chain transfer agent concentration, and monomer concentration on the RAFT polymerization kinetics. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The poly(4‐vinylpyridine) with hydroxyl end group and narrow polydispersity was synthesized by polymerization of 4‐vinylpyridine by the use of nitroxide initiator based on 4‐hydroxy‐2,2,6,6‐tetramethylpiperidin‐1‐oxyl and azobisisobutyronitrile. The effects of different initiator amounts and reaction time on polymerization rate, molecular weight, and molecular weight distribution of the poly(4‐vinylpyridine) were investigated at bulk polymerization. The experimental results have shown that the polymerization of 4‐vinylpyridine is a controlled living free‐radical polymerization; the molecular weight is proportional to reaction time; and the molecular weight and molecular weight distribution are affected by molar ratios of [4‐hydroxy‐2,2,6,6‐tetramethylpiperidin‐1‐oxyl]/[azobisisobutyronitrile]. By varying the ratio of 4‐hydroxy‐2,2,6,6‐tetramethylpiperidin‐1‐oxyl to azobisisobutyronitrile, the poly(4‐vinylpyridine) with narrow polydispersity can be obtained. X‐ray photoelectron spectroscopy results show that the synthesized poly(4‐vinylpyridine) can be tethered on the surface of silicon wafer through the reaction between hydroxyl end of poly(4‐vinylpyridine) and native silicon oxide layer on the wafer surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2687–2692, 2002  相似文献   

7.
Controlled radical double ring‐opening polymerization of 2‐methylene‐1,4,6‐trioxaspiro[4,4]nonane (MTN) has been achieved with tert‐butyl perbenzoate (TBPB) as initiator in the presence of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy free radical (TEMPO) at 125 °C. The molecular weight polydispersity of the polymers is obviously lower than that of polymers obtained by conventional procedures. As the [TEMPO]/[TBPB] molar ratio increased, the polydispersity decreased and a polydisperty as low as 1.2 was obtained at high TEMPO concentration. With the conversion of the monomer increasing, the molecular weight of the polymers turned higher and a linear relationship between the Mw and the monomer conversion was observed. The monomer conversion, however, did not exceed 30 %. © 2000 Society of Chemical Industry  相似文献   

8.
The bulk free‐radical polymerization of styrene in the presence of a new cyclic trifunctional initiator, 3,6,9‐triethyl‐3,6,9‐trimethyl‐1,4,7‐triperoxonane, was studied. Full‐conversion‐range experiments were carried out to assess the effects of the temperature and initiator concentration on the polymerization kinetics, molecular weight, and polydispersity. Gel permeation chromatography was used to measure the molecular weight and the molecular weight distribution of polystyrene. When this multifunctional initiator was used for styrene polymerization at higher temperatures, it was possible to produce polymers with higher molecular weights and narrower molecular weight polydispersity at a higher rate. This showed that the molecular weight and polydispersity were influenced by the initiator concentration and the polymerization temperature in an unusual manner. Moreover, polystyrene, obtained with trifunctional peroxide, had O? O bonds in the molecular chains and was investigated with differential scanning calorimetry and gel permeation chromatography. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1035–1042, 2004  相似文献   

9.
Batch living‐radical polymerization techniques were used to produce polymers with molecular weight distributions approaching the narrowness of truly living (ionic) systems. Continuous reactors may offer some advantages for living polymerization in copolymer morphology, but continuous polymerization with any level of backmixing will broaden the molecular weight distribution. This study used simple moment techniques to demonstrate that idealized living‐radical polymerization in a single stirred tank reactor will have a polydispersity of 2. This is also the theoretical minimum polydispersity for a truly living polymerization. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 539–542, 2004  相似文献   

10.
A mathematical model of the molecular weight distribution (MWD) based on a particle growth model and the kinetic scheme is developed to simulate the MWD of the slurry phase propylene polymerization on a silica-supported metallocene catalyst by means of the equations of moments. The model is used to predict molecular weight distribution, including the number-average molecular weight, the weight-average molecular weight, and the polydispersity index. The results show that the mass transfer has great influence on the polymerization reaction, and it can broaden the MWD especially; moreover, the MWD can be evaluated by simulation; the average molecular weight increases as pressure or temperature, and MWD shifts to long chain lengths as the effective diffusion coefficient increasing thought the influence is not remarkable; furthermore, the MWD's simulation results are calculated, which fit greatly with the experimental data.  相似文献   

11.
The changes of the molecular weight and particle size with time during the oxidative polymerization of 2,6‐dimethylphenol in an aqueous medium were studied. At the beginning of the oxidative polymerization, the oligomers with the hydrophilic phenoxy anion at the end of oligomer chains are formed rapidly in the aqueous medium. When the molecular weight of the oligomer reaches up to a critical value, the oligomer precipitates out from the water, resulting in the formation of the original particle (or domain). With the increase of the molecular weight, the concentration of the phenoxy anion and the surface charge density of the original particles decrease; therefore, the repulsion force between original particles weaken and the stability of particles in water decreases, resulting in the coagulation of the original particle and the formation of the primary particle. With the further progression of the polymerization, the primary particles coagulate and final particles are formed. A three‐stage mechanism of the particle formation is proposed, that is, the particle nucleation, first coagulation, and second coagulation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3649–3653, 2007  相似文献   

12.
tert‐Butyl vinyl ether (tBVE) was polymerized with the catalyst dimethyl[rac‐ethylenebis(indenyl)] zirconium (ansa‐zirconocene) with tri(pentafluorophenyl) borane [B(C6F5)3] as a cocatalyst. The effects of various polymerization conditions, such as the polymerization time, type of polymerization solvent, polymerization temperature, and catalyst concentration, on the conversion of tBVE into poly(tBVE), its molecular weight and molecular weight distribution, and its stereoregularity were investigated. The maximum conversion of tBVE into poly(tBVE) was over 90% at a polymerization temperature of ?30°C with an ansa‐zirconocene and B(C6F5)3 concentration of 3.0 × 10?7 mol/mol of tBVE, respectively. The number‐average molecular weights of poly(tBVE) ranged from approximately 14,000 to 20,000, with a lower polydispersity index (weight‐average molecular weight/number‐average molecular weight) ranging from 1.48 to 1.77, at all polymerization temperatures. The number‐average molecular weight of poly(tBVE) increased with decreases in the polymerization temperature and catalyst concentration. The mm triad sequence fraction of poly(tBVE) polymerized with ansa‐zirconocene/B(C6F5)3 at ?30°C was much higher than that of poly(tBVE) polymerized with the B(C6F5)3 catalyst at ?30°C, and this indicated that the ansa‐zirconocene/B(C6F5)3 catalyst system affected the isospecific polymerization of tBVE. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Polyamide 6 (PA6)/polystyrene (PS) blends with an average particle size of 103 nm were prepared by diffusion and subsequent polymerization of styrene in water‐sorbed PA6 pellets. The pretreatment of PA6 pellets in hot water is prerequisite for successful styrene diffusion. The diffusion process involves replacement of free water in the pellets by styrene, and should be carried out in neat styrene medium to provide concentration gradient between inside and outside of the pellets. The polymerization step was carried out in water medium with benzoic peroxide as the initiator. The diametrical distribution of PS in the blend pellets was investigated by Micro‐FTIR, and molecular weight of PS was measured by GPC. DSC measurements showed that the diffusion and polymerization of styrene occur in the amorphous regions of PA6 where the pre‐sorbed water locates. PA6/PS quasi‐nanoblends reported in this work cannot be obtained by conventional methods. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44554.  相似文献   

14.
BACKGROUND: Controlled/‘living’ radical polymerization is a new and robust method to synthesize polymers with predetermined molecular weight, narrow polydispersity and tailored architecture. Several methods have been developed but reversible addition‐fragmentation chain transfer (RAFT) has several advantages over the other methods. It has been reported that the effectiveness of RAFT agents depends strongly on the nature of the Z and R groups. RESULTS: Three new dithiocarbamates, namely (2‐ethoxy carbonyl)‐prop‐2‐yl‐pyrrole‐1‐carbodithioate (CTA‐A), (1‐phenyl ethyl)‐pyrazole‐1‐carbodithioate (CTA‐B) and (2‐ethoxy carbonyl)‐prop‐2‐yl‐pyrazole‐1‐carbodithioate (CTA‐C), were synthesized for studying the effect of the Z and R group of a chain transfer agent on the RAFT polymerization of styrene, initiated by 2,2′‐azobisisobutyronitrile. Well‐controlled molecular weight with narrow polydispersity (1.10–1.46) was achieved. The increase in molecular weight with conversion is linear and follows first‐order kinetics. CONCLUSION: The detailed kinetic results show that the structure of the activating (Z) group of dithiocarbamates has significant effects on the reactivity of dithiocarbamates towards the polymerization of styrene. In the homopolymerization of styrene it was found that, from the polydispersity index of polystyrenes obtained and the kinetic results, the pyrazole‐based dithiocarbamates (CTA‐B and CTA‐C) are very effective compared to the pyrrole‐based dithiocarbamate (CTA‐A). All the polymerizations show controlled living characters. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
The copolymer of acrylamide (AM) and 2‐acrylamido‐2‐methyl‐1‐propane sulfonate (AMPS) was synthesized through the free radical dispersion polymerization in an aqueous solution of ammonium sulfate and in the presence of poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonate) as stabilizer. The average particle size of the copolymer ranged from 1 to 4 μm, and the molecular weight was from 2.0 × 106 to 7.0 × 106 g mol?1. By analyzing apparent viscosity and particle size, the swelling property of the dispersion copolymer was studied. When the dispersion was diluted with salt water in which the ammonium sulfate concentration kept equal with that of the original dispersion, particle size and particle size distribution of the diluted dispersion changed a little, compared with that of the original dispersion. While diluted with deionized water, particle size and particle size distribution could expand several times. The effects of varying concentrations of the stabilizer, the monomer, the salt and the initiator on particle size, and molecular weight of the copolymer were investigated, respectively. The reaction conditions for preparing stable dispersion were concentrations of 20–28% of the salt, 6–14% of monomers, and 1.8–2.7% of the stabilizer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:2379–2385, 2006  相似文献   

16.
N‐Vinylcarbazole (VCZ) was solution polymerized in 1,1,2,2,‐tetrachloroethane (TCE) at 30, 40, and 50°C using a low‐temperature initiator, 2,2'‐azobis(2,4‐dimethylvaleronitrile) (ADMVN); the effects of polymerization temperature and concentrations of initiator and solvent were investigated. On the whole, the experimental results corresponded to predicted ones. Low‐polymerization temperature using ADMVN proved to be successful in obtaining poly(N‐vinylcarbazole) (PVCZ) of high molecular weight with smaller temperature rise during polymerization, nevertheless of free radical polymerization by azoinitiator. The polymerization rate of VCZ in TCE was proportional to the 0.46 power of ADMVN concentration. The molecular weight was higher and the molecular weight distribution was narrower with PVCZ polymerized at lower temperatures. For PVCZ produced in TCE at 30°C using ADMVN concentration of 0.00005 mol/mol of VCZ, weight‐average molecular weight of 271 000 was obtained, with polydispersity index of 1.66. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1558–1563, 2000  相似文献   

17.
Emulsifier‐free emulsion polymerization of styrene (St) and copolymerization of St and 4‐vinyl pyridine (4VP) in the presence of ammonium persulfate were studied. A comparison between the two polymerization systems was made. It was found that there were big differences comparing polymerization rate, the number and size of the particles and distribution, and molecular weight. For the St–4VP system, it was found that the additional amount of 4VP influenced the copolymerization of St and 4VP, molecular weight, and particle size. The formation mechanism of the particles was discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1502–1507, 1999  相似文献   

18.
To produce high molecular weight poly(N‐vinylcarbazole) (PVCZ) with high conversion, N‐vinylcarbazole (VCZ) was heterogeneously polymerized in methanol at 30, 40 and 50 °C using a low temperature initiator, 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN), and the effects of polymerization temperature and concentration of initiator and solvent on the polymerization behaviour and molecular parameters of PVCZ investigated. Globally, experimental results correspond to predicted ones. Low polymerization temperature using ADMVN and a heterogeneous system using methanol proved to be successful in obtaining poly(N‐vinylcarbazole) (PVCZ) of high molecular weight and high conversion with small temperature rise during polymerization, although free radical polymerization by azoinitiator was used. The polymerization rate of VCZ in methanol at 30 °C is proportional to the 0.88th power of ADMVN concentration. The molecular weight is higher and the molecular weight distribution is narrower with PVCZ polymerized at lower temperatures. For PVCZ produced in methanol at 30 °C using an ADMVN concentration of 0.0001 mol/mol of VCZ, a weight average molecular weight of 1 750 000 g mol−1 is obtained, with a polydispersity index of 1.82 © 2000 Society of Chemical Industry  相似文献   

19.
N‐Vinylcarbazole (VCZ) was solution‐polymerized in tetrahydrofuran (THF) at ?20, 0, and 20°C using the photoinitiation method; the effects of the amount of solvent, polymerization temperature, and photoinitiator concentration were investigated. On the whole, the experimental results corresponded to predicted ones. Low polymerization temperature using photoinitiation proved to be successful in obtaining poly(N‐vinylcarbazole) (PVCZ) of a high molecular weight with a smaller temperature rise during polymerization; nevertheless of free radical polymerization by 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN). The photo‐solution polymerization rate of VCZ in THF was proportional to the 0.47 power of ADMVN concentration. The molecular weight was higher and the molecular weight distribution was narrower with PVCZ polymerized at lower temperatures. For PVCZ prepared in THF at ?20°C using a photoinitiator concentration of 0.00005 mol/mol of VCZ, a weight‐average molecular weight of 510,000 was obtained, with a polydispersity index of 1.73, and a degree of lightness converged to about 99%. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3667–3672, 2002  相似文献   

20.
Minireactor technology has been used for kinetic studies on polymerization kinetics, phase equilibrium, and mass transfer on a very small scale. There is a nonlinear influence of temperature and pressure on the polymerization rate. The phase equilibrium can be described by a Flory–Huggins approach, with a temperature‐dependent interaction parameter. The diffusion coefficient seems to be slightly pressure dependent, and the temperature dependence can be described with an Arrhenius equation. A simple formal kinetic scheme with formation of active sites, chain propagation, chain transfer to cocatalyst, and deactivation of active sites has been applied. This kinetic scheme was implemented in two different models; they are, a particle model taking into account mass transfer and a simple chemical model with no mass transfer. In principle, both models describe the experimental results for rate and molecular weight distribution equally well, with rate constants of the same magnitude. Molecular weight distributions calculated by the chemical model are narrower. However, the chemical model gives no explanation for the experimental observed rate dependence on catalyst particle size. With increasing catalyst activity, the differences between both models become more significant and the particle model becomes more and more important. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 270–279, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号