共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
暗通道先验(DCP)近几年已被证实是一种合适的除雾模型,然而其过程将引起图像的Halo效应和颜色失真.基于此,提出了结合亮通道原理和天空区域分割的新算法.使用亮通道和暗通道的结合来精准估计大气光值和透射率,天空区域自适应分割解决恢复无雾图像时天空区域的色彩失真问题.将从主观及客观两方面将本文去雾算法与现有算法进行对比,结果表明,本算法能够有效消除Halo效应,获得高对比度、高色彩饱和度以及丰富细节信息的去雾结果,同时也提高了图像去雾效率. 相似文献
3.
4.
夜间有雾图像会导致图像质量下降,主要体现在夜间有雾图像光照不均、对比度较低且色偏严重,而人工光源的存在更是使得环境光呈现出不均匀性.现有的主流算法主要是针对白天图像进行处理,并不适用于夜间场景去雾处理,导致夜间去雾难度加大.针对上述问题,通过深入分析夜间有雾图像的成像特点,提出了一种新的夜间图像去雾算法.针对夜间有雾图像的色偏问题,提出了改进的暗通道先验算法(MRP)进行颜色校正,该方法单独操作每一个颜色通道进行颜色校正,从而可以减少由MRP引起的光源区域周围的光晕效应;针对夜间场景环境光不均匀性的特点,提出了基于有雾图像低频分量的最小-最大值滤波方法,以此来实现局部环境光的估计;针对最大反射率先验(DCP)估计透射率在光源处失效的问题,提出了一种基于光源区域自适应的透射率估计算法.实验结果表明,该算法在抑制光晕和光源区域发散的同时,能够较好地重现暗部细节,恢复图像具有较好的亮度和对比度,且色彩自然.相比暗通道先验,所提方法的峰值信噪比(PSNR)与结构相似性值(SSIM)平均提升了81.8%和26.5%. 相似文献
5.
在图像去雾领域中,目前多数去雾模型难以维持精度与效率的平衡,高精度的模型往往伴随着复杂的网络结构,而简单的网络结构又往往会导致低质量的结果.针对该问题提出一个基于雾浓度分类与暗-亮通道先验的多分支去雾模型,通过对带雾图像分类,使用复杂度不同的网络来处理不同雾浓度的图像,可在保证精度的同时提高计算效率.模型由轻量级雾图像分类器和基于暗-亮通道先验的多分支去雾网络2部分构成:前者将带雾图像分为轻雾、中雾、浓雾3类,输出雾浓度标签;后者包含3个结构相同、宽度不同的分支网络,根据雾浓度标签选择不同的分支网络处理不同雾浓度图像,恢复至无雾图像.提出一个新的雾浓度分类方法以及基于该方法的雾浓度分类损失函数,可根据带雾图像的暗通道特征和恢复难度,结合生成图像质量和模型计算效率,得到对带雾图像合理准确的分类结果,达到去雾效果和算力需求的良好平衡.提出新的暗通道与亮通道先验损失函数,用于约束分支去雾网络,可有效提高去雾精度.实验结果表明,模型能够以更低的网络参数量和复杂度得到更优的去雾结果. 相似文献
6.
7.
针对现有图像去雾方法易于在天空区域引入负面视觉效果的缺陷,提出一个结合天空区域识别的单幅图像去雾方法;提出一个新的天空区域特征先验知识,并利用所提先验将雾天降质图像分割为天空与非天空区域;基于天空区域对大气光进行估计,并利用暗通道先验和导向全变分模型对非天空区域的透射率进行估计,从而基于大气散射模型获得去雾处理后的图像;使用一种邻域自适应的Retinex方法克服了去雾处理后图像偏暗的问题。对比实验证明,所提方法相比现有的类似方法具备更好的有效性及鲁棒性。 相似文献
8.
针对暗通道先验去雾算法在图像灰白色或天空区域会产生颜色畸变及图像比较暗淡的问题,提出一种基于暗通道先验改进的算法。该算法通过修正导致颜色畸变的透射率计算问题,从而提高图像的视觉效果。同时,通过降低3个颜色通道的高亮度值,并采用均值方法来得到增强的无雾图像。实验结果表明,本文方法在很大程度上消除了去雾图像明亮区域的颜色畸变现象且有更好的颜色恢复度。 相似文献
9.
10.
11.
目的 针对暗原色先验去雾算法出现的边缘残雾、天空色彩失真以及速度较慢问题,提出一种快速有效的图像去雾算法。方法 舍弃传统分块的思想,采用逐像素处理的方法估计透射率,并对估计值过低的透射率进行适当的增强。大气光采用效率更高的四叉树算法来求解。结果 有效地解决了边缘残雾和天空色彩失真问题,相比其他算法,去雾后的视觉效果有所提升。透射率和大气光的求解速度都得到一定程度的提高,去雾速度是暗原色先验去雾算法的近4倍。结论 实验结果表明,本文算法在保证良好去雾效果的前提下能大幅提升去雾的效率,节省去雾所花费的时间。对于大部分有雾图像,本文算法都能够达到较好的去雾效果,但在处理具有较大景深的图像时,远景部分的去雾效果欠佳。鉴于速度上的优势,本文算法适用于对实时性要求比较高的去雾场合。 相似文献
13.
传统基于暗通道先验的图像去雾算法不能有效去除有雾图像在景深突变处的雾点,边界处容易引起光晕效应,对此提出一种基于暗通道先验的自适应超像素去雾算法.首先,在暗通道的获取过程中引入自适应方法判断当前像素邻域内是否具有多个景深物体,若仅存在相同景深物体,则直接求取此像素的暗通道,若存在多个景深物体,则引入超像素分割算法区分不同景深物体,减小景深变化对暗通道获取的影响,以求取更准确的暗通道;然后,估计粗略的透射率,并根据上下文约束细化透射率;最后,通过图像降质的逆过程求解去雾图像.实验结果表明,所提出的算法与暗通道先验单幅图像去雾(DCP)算法、基于边界邻域最大值滤波的快速图像去雾(EMDCP)算法、基于自适应暗原色的单幅图像去雾(ADCP)算法、带边界约束和上下文正则化的高效图像去雾(BCCR)算法相比,可将客观质量综合评价准则提高10%,能够抑制光晕效应,提高有雾图像的视觉效果. 相似文献
14.
《计算机科学与探索》2017,(7):1131-1139
针对暗原色先验在明亮区域和天空区域透射率估计值偏小,致使复原图像亮度偏暗、颜色失真等问题,提出了一种新的图像去雾算法。在计算暗通道函数时,定义了一类平滑暗通道对3个颜色通道值的集中趋势进行描述,则该区域像素点的暗通道的值为其三原色通道的平均值,代替原来的最小值。使用均值滤波得到平滑的粗透射率,再通过引导滤波对透射率进行细化处理,进而估计全球大气光值,有效地去除了光晕效应及黑斑效应。将图像像素的亮度值与全球大气光值进行比较,对处在一定范围内大于或小于大气光值的像素点作为明亮区域的点,并对该点的透射率进行修正,使求得的透射率更为准确,复原后的图像细节更加清晰。实验结果表明,该算法能有效解决大面积明亮区域图像失真的问题,复原后的图像也具有较高的亮度和对比度。 相似文献
15.
《计算机应用与软件》2017,(3)
在雾霾天气下,大气散射作用导致采集图像信息丢失。针对这一问题,以暗通道先验原理为基础,提出一种基于线性加权的自适应图像去雾算法。首先,在计算暗通道函数时,采用一种改进方法生成精确的暗原色图,并使用图像锐化技术确保场景边界特性;其次,针对复原图像对比度过深,定义一种自适应的线性加权方式计算准确的大气光强值,确保得到代表实际场景的透射率图;最后基于大气散射的物理模型,得到清晰的无雾复原图片。实验结果表明,该方法能有效地实现图像去雾,且具有效果好和速度快的优点。 相似文献
16.
目的为解决传统基于暗原色先验的单幅图像去雾算法实现效率低以及恢复雾化图像在天空、白云等明亮区域颜色失真的不足,提出一种改进算法。方法通过分块思想,完成透射率的空间自适应估计;通过判断大气光强度和暗通道差值绝对值大小来判断雾图中是否含有明亮区域。结果该算法不仅降低了传统算法的时间复杂度,而且弥补了传统算法在明亮区域透射率估计的不足。结论实验结果表明该改进算法可行、有效。 相似文献
17.
图像去雾技术的目的是为了去掉图像中雾的影响,从而获得高质量的图像.本文主要从图像增强、图像复原和深度学习的角度归纳总结了图像去雾方法的研究状况,对暗通道先验等经典算法以及新活跃在去雾领域的几种深度学习去雾算法做了进一步的分析,并对各类算法的性能进行了总结,最后针对各类图像去雾方法指出了存在的问题及未来的展望. 相似文献
18.
针对单幅雾霾图像中存在大面积明亮区域,暗通道先验失效、引导滤波算法去雾不彻底和时间复杂度较高的问题,提出了一种基于图像融合的快速单幅图像去雾算法.在大气散射模型的基础上,对大气光值进行区间估计;由暗通道先验法得到透射率的简单估计,由Retinex理论进行多尺度高斯卷积得到透射率的模糊估计,利用图像融合将两者进行像素级融合,得到透射率的精确估计;采用交叉双边滤波进行平滑处理并针对明亮区域修正透射率;对复原图像进行色调调整后得到最终图像.实验表明:算法不仅取得良好的去雾效果和较好的图像色彩,还有效降低了时间复杂度. 相似文献
19.
针对多发性的雾霾天气下获得的图像质量退化问题,雾天退化图像的去雾复原技术引起广泛关注。在充分分析雾天图像特点的前提下,研究暗通道先验算法在图像去雾中的应用并借助Matlab平台实现仿真验证。首先将采集到的雾天图像载入系统,然后使用暗通道先验算法处理图像。实验结果证明,该方法具有良好的去雾效果,处理后的图像不仅更加清晰,同时增强了细节信息,提升了图像的利用价值。 相似文献
20.
针对现有去雾算法应用于交通标志图像时容易产生信息丢失、色彩失真等问题,导致去雾后图像质量较低,不能很好地满足交通标志识别系统(TSRS)的实际应用需求,提出一种基于天空分割的单幅交通标志图像去雾算法。根据大津算法结合图像灰度特征得到自适应阈值实现天空区域和非天空区域的准确分割;非天空区域采取改进的暗通道先验算法去雾,引入自适应中值滤波和快速双边滤波联合的方法优化透射率,天空区域则采取直方图均衡化算法去雾;通过融合得到无雾图像;引入高斯滤波对严重降质图像进行去雾后清晰化处理。实验结果表明,去雾后图像在峰值信噪比等多个客观评价指标上的综合表现优于其他几种去雾方法,所提算法在保证较低的时间复杂度的同时,能有效地保留图像信息,还原出清晰的真实图像,满足TSRS的实际应用需求。 相似文献