首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hydrogels based on N‐acryloyl‐N′‐methylpiperazine (AcrNMP) swelled extensively in solutions of low pH due to the protonation of the tertiary amine. The water transport in the gels under an acidic condition was non‐Fickian and nearly Fickian in neutral pH with the collective diffusion coefficients determined as 2.08 × 10−7 and 5.00 × 10−7 cm−2 s−1, respectively. These gels demonstrated good metal‐uptake behavior with various divalent metal ions, in particular, copper and nickel, with the uptake capacity increased with increasing pH. The swelling ratio of the gel in the presence of metal ions decreased with increasing metal ion uptake. The results suggest that high metal ion uptake can lead to physical crosslinking arising from the interchain metal complex formation. The metal‐loaded gels could be stripped easily with 1M H2SO4 without any loss in their uptake capacity. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 268–273, 2001  相似文献   

2.
The effects of 8.0×10−17 J (500 eV) and 3.2×10−19 J (2 eV) electrons on chemical structure of octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX) were studied in situ, under ultra‐high vacuum conditions using a combination of X‐ray photoelectron spectroscopy (XPS) and quadrupole mass spectrometry. XPS data indicated that electrons impact by 8.0×10−17 J for 30 s caused a decrease in nitro group concentration, and a little shift in the binding energy of the nitrogen 1s peak. Such a phenomenon was found at very low kinetic energy (3.2×10−19 J) with time evolution. Quadrupole mass spectrometry detected gas desorption after electron irradiation included H2O and H2 mostly. Microscopy‐IR spectroscopic investigations also proved that the intensity of nitro groups of HMX after irradiation decreased compared with those of the pristine HMX. We attributed the structure changes obtained by XPS and IR spectroscopy result in a chemical transformation, which was associated with low‐energy dissociative electron attachment (DEA) of surface contaminants followed by deoxidization reactions to form the product molecules.  相似文献   

3.
This study describes the successful recovery of 2,4‐dichlorophenol (DCP) from wastewater using the Membrane Aromatic Recovery System (MARS). In the MARS process a non‐porous membrane separates a wastewater stream and a stripping solution. DCP is extracted from the wastewater and concentrated in its ionic form in the stripping solution, with pH ? pKa DCP. The MARS extraction stage was operated in batch mode with the stripping solution placed inside, and the wastewater stream outside, the membrane tubes. Advantages of this configuration are avoidance of membrane blockage, reduction of stripping solution volume and operational flexibility. The stability and mass‐transfer characteristics of two different membrane materials, poly(dimethylsiloxane) (PDMS) and ethylene–propylene diene terpolymer (EPDM), were tested in DCP solutions with different acidities in order to simulate real industrial waste streams. EPDM exhibits one order of magnitude lower mass‐transfer rates than PDMS (1.4 × 10?7 m s?1 vs 20 × 10?7 m s?1 at 30 °C and 2.4 × 10?7 m s?1 vs 39 × 10?7 m s?1 at 60 °C), however its higher resistance to acid attack provides higher membrane lifetimes. This can be crucial for MARS processes treating real acidic industrial wastewater. A 97% recovery of DCP with a water content of 15 wt% was obtained upon neutralisation of the stripping solution. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Two new highly stable energetic salts were synthesized in reasonable yield by using the high nitrogen‐content heterocycle 3,4,5‐triamino‐1,2,4‐triazole and resulting in its picrate and azotetrazolate salts. 3,4,5‐Triamino‐1,2,4‐triazolium picrate (1) and bis(3,4,5‐triamino‐1,2,4‐triazolium) 5,5′‐azotetrazolate (2) were characterized analytically and spectroscopically. X‐ray diffraction studies revealed that protonation takes place on the nitrogen N1 (crystallographically labelled as N2). The sensitivity of the compounds to shock and friction was also determined by standard BAM tests revealing a low sensitivity for both. B3LYP/6–31G(d, p) density functional (DFT) calculations were carried out to determine the enthalpy of combustion (ΔcH (1) =−3737.8 kJ mol−1, ΔcH (2) =−4577.8 kJ mol−1) and the standard enthalpy of formation (ΔfH° (1) =−498.3 kJ mol−1, (ΔfH° (2) =+524.2 kJ mol−1). The detonation pressures (P (1) =189×108 Pa, P (2) =199×108 Pa) and detonation velocities (D (1) =7015 m s−1, D (2) =7683 m s−1) were calculated using the program EXPLO5.  相似文献   

5.
The solubility of the modifying ligand is an important parameter for the efficiency of a rhodium‐catalysed hydroformylation system. A facile synthetic procedure for the preparation of well‐defined xanthene‐type ligands was developed in order to study the influence of alkyl substituents at the 2‐, and 7‐positions of the 9,9‐dimethylxanthene backbone and at the 2‐, and 8‐positions of the phenoxaphosphino moiety of ligands 1 – 16 on solubility in toluene and the influence of these substituents on the performance of the ligands in the rhodium‐catalysed hydroformylation. An increase in solubility from 2.3 mmol⋅L−1 to >495 mmol⋅L−1 was observed from the least soluble to the most soluble ligand. A solubility of at least 58 mmol⋅L−1 was estimated to be sufficient for a large‐scale application of these ligands in hydroformylation. Highly active and selective catalysts for the rhodium‐catalysed hydroformylation of 1‐octene and trans‐2‐octene to nonanal, and for the hydroformylation of 2‐pentene to hexanal were obtained by employing these ligands. Average rates of >1600 (mol aldehyde) × (mol Rh)−1×h−1 {conditions: p(CO/H2) = 20 bar, T = 353 K, [Rh] = 1 mM, [alkene] = 637 mM} and excellent regio‐selectivities of up to 99% toward the linear product were obtained when 1‐octene was used as substrate. For internal olefins average rates of >145 (mol aldehyde)×(mol Rh)−1×h−1 {p(CO/H2) = 3.6–10 bar, T = 393 K, [Rh] = 1 mM, [alkene] = 640–928 mM} and high regio‐selectivities up to 91% toward the linear product were obtained.  相似文献   

6.
Reactions of dicyclohexylmethane‐4,4′‐diisocyanate (H12MDI) with 1‐ or 2‐butanol in N,N‐dimethylformamide using dibutyltin dilaurate (DBTDL), stannous octoate (SnOct), or triethylamine (TEA) as catalyst were conducted in stirred reactors at 40°C. Reactor contents were circulated through an external loop containing a temperature‐controlled FTIR transmission cell; reaction progress was monitored by observing decrease in height of the isocyanate peak at 2266 cm−1. Catalyzed reactions were second order as indicated by linear 1/[NCO] plots; uncatalyzed reactions yielded nonlinear plots. In all cases, the reaction with a primary alcohol was faster than that with a secondary alcohol. DBTDL dramatically increased the reaction rate with both primary and secondary alcohols. For [DBTDL] = 5.3 × 10−5 mol/L (300 ppm Sn) the second‐order rate constant, k, was 5.9 × 10−4 (primary OH) and 1.8 × 10−4 L/(mol s) (secondary OH); for both alcohols, this represents an increase in initial reaction rate on the order of 2 × 101 when compared with the uncatalyzed reactions. The second‐order rate constant was observed to increase linearly with DBTDL concentration in the range 100–700 ppm Sn. SnOct and TEA showed little to no catalytic activity with the primary alcohol and only a slight increase in reaction rate with the secondary alcohol. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
The extraction of zinc(II) by Cyanex 923 (phosphine oxides mixture) in Solvesso 100 from hydrochloric acid solution has been investigated. The extraction reaction is exothermic. The numerical analysis of metal distribution data suggests the formation of ZnCl2·L2,HZnCl3·2L and H2ZnCl4·2L(L = ligand) in the organic phase with formation constants Kext = 4.1,5.6 × 109 and 6.7 × 109, respectively. The results obtained for zinc(II) distribution have been implemented in a solid‐supported liquid membrane system. The influence of source phase stirring speed, membrane composition and metal concentration on zinc transport have been investigated. © 2001 Society of Chemical Industry  相似文献   

8.
Phase behavior of octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX) is investigated by X‐ray powder diffraction (XRD). The XRD patterns at elevated temperature show that there is a co‐existing temperature range of β‐ and δ‐phase during the phase transition process. Additionally, mechanical forces can catalyze the conversion from δ‐ back to β‐phase. Based on the diffraction patterns of β‐ and δ‐phase at different temperatures, we calculate the coefficients of thermal expansion by Rietveld refinement. For β‐HMX, the linear coefficients of thermal expansion of a‐axis and b‐axis are about 1.37×10−5 and 1.25×10−4 °C−1. A slight decrease in c‐axis with temperature is also observed, and the value is about −0.63×10−5 °C−1. The volume coefficient of thermal expansion is about 1.60×10−4 °C−1, with a 2.2% change from 30 to 170 °C. For δ‐HMX, the linear coefficients of thermal expansion of a‐axis and c‐axis are found to be 5.39×10−5 and 2.38×10−5 °C−1, respectively. The volume coefficient of thermal expansion is about 1.33×10−4 °C−1, with a 2.6% change from 30 to 230 °C. The results indicate that β‐HMX has a similar volume coefficient of thermal expansion compared with δ‐HMX, and there is about 10.5% expansion from β‐HMX at 30 °C to δ‐HMX at 230 °C, of which about 7% may be attributed to the reconstructive transition.  相似文献   

9.
The novel application of a catalytic water‐gas‐shift membrane reactor for selective removal of CO from H2‐rich reformate mixtures for achieving gas purification solely via manipulation of reaction and diffusion phenomena, assuming Knudsen diffusion regime and the absence of hydrogen permselective materials, is described. An isothermal, two‐dimensional model is developed to describe a tube‐and‐shell membrane reactor supplied with a typical reformate mixture (9% CO, 3% CO2, 28% H2, and 15% H2O) to the retentate volume and steam supplied to the permeate volume such that the overall H2O:CO ratio within the system is 9:1. Simulations indicate that apparent CO:H2 selectivities of 90:1 to >200:1 at H2 recoveries of 20% to upwards of 40% may be achieved through appropriate design of the catalytic membrane and selection of operating conditions. Under these conditions, simulations predict an apparent hydrogen permeability of 2.3 × 10?10 mol m?1 Pa, which compares favorably against that of competing hydrogen‐permselective membranes. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4334–4345, 2013  相似文献   

10.
This article reports experimental work on the effect of N+ ion implantation on third‐order nonlinear optical properties of POT films. Using K2Cr2O7 as oxidizing agent, poly‐ortho‐toluidine (POT) was synthesized in 1 M hydrochloric. The POT films were prepared by spin‐coating method and then implantated by N+ ions (15–30 KeV) at a dose 1.9 × 1016 ions/cm2. The films were characterized by FT‐IR spectroscopy, visible spectroscopy and SEM, their third‐order nonlinear optical susceptibility (χ(3)) were also examined by a degenerate four‐wave mixing (DFWM) system at 532nm. Compared to pristine POT films, the optical band gap obtained from visible spectra decreased from 3.58 to 3.48 eV when the energy was 30 KeV. Also, The χ(3) value of implantated POT films increased from 3.31 × 10−10 esu to 4.04 × 10−9 esu when the implantated energy was 25 KeV. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

11.
Supramolecular crosslinked FeII‐terpyridine cellulose nanocrystals (Fe‐CTP) were prepared by surface modification of cellulose nanocrystals with 4′‐chloro‐2,2′:6′,2″‐terpyridine and subsequent reaction with Fe(II)SO4. The prepared complex was characterized using transmission electron microscopy (TEM), ultraviolet spectroscopy (UV), thermogravimetric analysis (TGA), and measuring its electrical properties at temperatures from 25 to 70°C. Use of Fe‐CTP at loadings from 1% to 10% (wt. ratio) in nanocomposites with polycaprolactone polymer was investigated; the nanocomposites were characterized regarding their electrical properties, which studied using broadband AC‐relaxation spectroscopy in the frequency range between 0.1 Hz and 1 MHz. The results were compared to that of PCL nanocomposites containing multiwalled carbon nanotubes (CNT). Variation in real and imaginary parts of permittivity has been explained on the basis of interfacial polarization of fillers in the polymer medium. The percolation limit of the conductive CNT and Fe‐CTP as studied by ac conductivity measurements has also been reported. Fe‐CTP showed conductivity values in the range of semiconductors. PCL/Fe‐CTP nanocomposites showed conductivity values from 1.98 × 10−11 to 3.76 × 10−6 while PCL/CNT nanocomposites showed conductivity values from 1.4 × 10−10 to 3.67 × 10−4 S/m for 1–10 wt% CNT content. POLYM. COMPOS., 37:2734–2743, 2016. © 2015 Society of Plastics Engineers  相似文献   

12.
BACKGROUND: This study explores an alternative process for the abatement and/or desulfurization of H2S and volatile organic sulfur compounds (VOSC) containing waste streams, which employs a silicone‐based membrane to simultaneously remove H2S and VOSC. An extractive membrane reactor allows the selective withdrawal of VOSC and H2S simultaneously from the waste stream, while preventing direct contact between the waste stream and the absorbing solution and/or the biological treatment system. The influence of the sulfur compounds, membrane characteristics, extractant and pH was studied. RESULTS: Sulfide and the VOCS studied, i.e. methanethiol (MT), ethanethiol (ET) and dimethylsulfide (DMS) were removed from the synthetic wastewater using a silicone rubber membrane. Methanethiol showed the highest (8.72 × 10?6 m s?1) overall mass transfer coefficient (kov) and sulfide the lowest kov value (1.23 × 10?6 m s?1). Adsorption of the VOCS into the silicone membrane reduced the overall mass transfer coefficient. The kov when using Fe(III)EDTA? as extractant (5.81 × 10?7 m s?1) for sulfide extraction was one order of magnitude lower than with anaerobic water (2.54 × 10?6 m s?1). On the other hand, the sulfide removal efficiency with Fe(III)EDTA? was higher (84%) compared with anaerobic water (60%) as extractant. An additional mass transfer resistance was formed by elemental sulfur which remained attached to the membrane surface. CONCLUSIONS: Extraction of sulfide and VOCS from a synthetic wastewater solution through a silicone rubber membrane is a feasible process as alternative to the techniques developed to treat VOSC emissions. Optimizing the aqueous absorption liquid can increase the efficiency of extraction based processes. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
In this work, hydrogen (H2) permeation fluxes through 230 nm‐thick graphene oxide (GO) membrane deposited on porous YSZ hollow fiber were measured and correlated to an explicit H2 permeation model. H2 fluxes through such GO‐YSZ hollow fiber membrane increased from 4.83 × 10?8 mol cm?2 s?1 to 2.11 × 10?7 mol cm?2 s?1 with temperature rise from 20 to 100 °C. The activation energy of H2 permeation was determined by the linear regression of the experimental data and was applied in the theoretical calculations. The model predictions fit well the temperature dependent and the argon sweep gas flow rate dependent H2 fluxes data. Using the derived permeation model, the effects of vacuum pressure at lumen side and H2 partial pressure at shell side, membrane area, and GO membrane film thickness on the membrane performance were simulated and discussed to provide insights for practical applications. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2711–2720, 2018  相似文献   

14.
Energetic tetrazine‐1,3‐dioxide, 5,7‐dinitrobenzo‐1,2,3,4‐tetrazine‐1,3‐dioxide ( DNBTDO ), was synthesized in 45 % yield. DNBTDO was characterized as an energetic material in terms of performance (Vdet 8411 m s−1; pC J 3.3×1010 Pa at a density of 1.868 g cm−3), mechanical sensitivity (impact and friction as a function of grain size), and thermal stability (Tdec 204 °C). DNBTDO exhibits a sensitivity slightly higher than that of RDX , and a performance slightly lower (96 % of RDX ).  相似文献   

15.
Transient discharging currents and steady‐state conduction in solution‐grown ethyl cellulose (EC)–poly(methyl methacrylate) (PMMA) blends measured as a function of temperature (30–80 °C) and field strength (10–100 kV cm−1) are reported. Transient currents are found to follow the Curie–VonSchweidler law, characterized by different slopes in short‐ and long‐time regions, having different decay constant values lying between 0.75–0.99, and 1.68–1.95. The corresponding activation energies are found to increase with time of measurement of discharge current. Isochronal characteristics (ie current versus temperature plots at constant times) constructed from the data seem to reveal a broad peak observed at 60 °C. The dependence of dark current at different temperatures (30–80 °C) in a metal (1)–EC–PMMA blend–metal (1)/(2) system on the applied voltage in the range 10–100 kV cm−1 has also been studied; the current is found to be strongly temperature dependent. Dipole polarization and space charge resulting from trapping of injected charge carriers in energetically distributed traps and induced dipoles created because of the piling up of charge carriers at the phase boundary of the heterogeneous components of the blend are considered to account for the observed transient currents. The results of current–voltage measurement on blends are interpreted to show that the low‐field steady‐state conduction is ohmic in nature, and in high fields the charge carriers are generated by field‐assisted lowering of coulombic barriers at the traps and are conducted through the bulk of the material by a hopping process between the localized states by a Jonscher–Ansari Poole–Frenkel mechanism. The modified P–F barrier is calculated to be 1.89 × 10−19 J (1.18 eV), 1.92 × 10−19 J (1.20 eV) and 1.95 × 10−19 J (1.22 eV) for P1, P2 and P3 blends, respectively. © 2000 Society of Chemical Industry  相似文献   

16.
Cation‐exchange hollow fiber membrane was prepared by radiation‐induced grafting polymerization of styrene onto polyethylene hollow fiber membrane and its sulfonation. Adsorption characteristics for the cation‐exchange membranes are examined when the solution of Co2+ permeates across the cation‐exchange fiber membrane. The maximum grafting peak was obtained from 70% styrene concentration at 50°C. The degree of grafting (%) was enhanced with additives such as H2SO4 and divinylbenzene. The content of  SO3H groups ranged from 2 to 5 mmol g−1 with chlorosulfonic acid (ClSO3H) in dichloroethane, from 0.5 to 6 mmol g−1 with ClSO3H in H2SO4, respectively. The adsorption of Co2+ by the cation‐exchange membranes increased with increasing  SO3H content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2227–2235, 1999  相似文献   

17.
BACKGROUND: This paper reports an analysis of the mass transfer behaviour of CO2 absorption in hollow fibre membrane modules in parallel and cross‐flow dispositions. The ionic liquid EMISE, 1‐ethyl‐3‐methylimidazolium ethylsulfate, is used to achieve a zero solvent emission process and the experimental results are compared with CO2 permeation through the membrane, without solvent in the lumenside. RESULTS: Overall mass transfer coefficients Koverall, CF = (0.74 ± 0.02) × 10?6 m s?1 and Koverall, PF = (0.37 ± 0.018) × 10?6 m s?1 were obtained for cross‐flow and parallel flow, respectively. These values are one order of magnitude lower than the coefficient obtained in permeability experiments, Koverall, PERM = (6.16 ± 0.1) × 10?6 m s?1, indicating the influence of the absorption in the process. Including the specific surface and gas volume of each contactor in the analysis, a similar value of a first‐order kinetic rate constant, KR = 2.7 × 10?3 s?1 is obtained, showing that the interfacial chemical reaction CO2‐ionic liquid is the slow step in the absorption process. CONCLUSION: An interfacial chemical reaction rate constant KR = 2.7 × 10?3 s?1, describes the behaviour of the CO2 absorption in the ionic liquid EMISE using membrane contactors in parallel and cross‐flow dispositions. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
An anion‐exchange membrane was prepared by the amination of chlorinated polypropylene and polyethyleneimine at a low temperature and was investigated with respect to not only its physical properties but also its electrochemical properties. The degrees of amination were 50.16, 53.76, 57.11, and 65.29% at 30, 40, 50, and 55°C, respectively. The base polymer membrane had no water uptake, whereas that of the aminated polymer membrane was 0.254, 0.296, 0.298, and 0.319 g of H2O/g of dry membrane, respectively, with increasing amination. The prepared membranes possessed an ion‐exchange capacity in the range of 1.257–2.000 mequiv/g of dry membrane and a fixed ion concentration in the range of 4.492–6.261 mequiv/g of H2O. The ionic conductivity of the aminated polymer membrane was highest when the water uptake was highest. Those of the prepared membrane were in the range of 0.89 × 10?2 to 1.36 × 10?2 S/cm. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The facilitated transport of copper(II) from nitrate/nitric acid media through a flat-sheet supported liquid membrane (FSSLM) is investigated, using the commercially available oxime Acorga M5640 as ionophore, as a function of hydrodynamic conditions, concentration of copper (7.9×10−5 to 1.3×10−3 M) and H+ (pH 1.0–2.0) and ionic strength in the feed solution, carrier concentration (5–40% v/v) in the membrane and support characteristics. The performance of the system is also compared using various diluents for the organic phase and against other available oxime extractants (MOC-55TD, LIX 860 and LIX 622). A model is presented that describes the transport mechanism, consisting of diffusion through a feed side aqueous diffusion layer, a fast interfacial chemical reaction, and diffusion of carrier and its metal complex through the organic membrane. The organic membrane diffusional resistance (Δo) and aqueous diffusional resistance (Δa) were calculated from the proposed model, and their values were 7.6×106 and 273 s/cm, respectively. It was observed that the copper flux across the membrane tends to reach a plateau at high concentration of copper or a low concentration of H+ owing to carrier saturation within the membrane, and leads to a diffusion-controlled process. The values of the apparent diffusion coefficient (Doa) and limiting metal flux (Jlim) were calculated from the limiting conditions and found to be 2.0×10−8 cm2/s and 2.3×10−11 mol/cm2 s, respectively. The values of the bulk diffusion coefficient (Do,b) and diffusion coefficient (Do) calculated from the model were 5.9×10−9 and 1.6×10−9 cm2/s, respectively. The polymeric microporous solid support, Durapore GVHP 04700, was selected throughout the study as it gave the best performance.  相似文献   

20.
The rhodium‐catalyzed hydroformylation‐hydrogenation of 1,2‐allenyl‐phosphine oxides and ‐phosphonates is reported in this paper. The regioselectivity was well controlled, affording only saturated linear γ‐phosphinyl aldehydes under the standard conditions: (carbonyl)tris(triphenylphosphine)‐rhodium hydride [RhH(CO)(PPh3)3] (3 mol%), triphenylphosphine (PPh3) (10 mol%), carbon monoxide (CO) (2.4×106 Pa), hydrogen (H2) (subsequently charged to 4.8×106 Pa), toluene, 100 °C, 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号