首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graft copolymers of acrylonitrile, ethyl acrylate, methyl acrylate, ethyl methacrylate and methyl methacrylate and of acrylonitrile/ethyl methacrylate and acrylonitrile/methyl methacrylate monomer mixtures on carboxymethylcellulose (degree of substitution 0.4–0.5) were prepared by use of ceric ion initiator in aqueous medium. The extent of graft polymer formation was measured in terms of graft level, molecular weight of grafted polymer chains and frequency of grafting as function of ceric ion concentration. It was found that at comparable reaction conditions, the molecular weight and frequency of grafting were not of the same order of magnitude. For the monomer mixtures, the copolymer compositions obtained from the total nitrogen content of the acrylonitrile/alkyl methacrylate copolymer samples showed that a relativity low amount of the acrylonitrile monomeric units were incorporated into the graft copolymer even at high acrylonitrile content of the feed.  相似文献   

2.
Studies were carried out on grafting of various vinyl monomers to nitrocellulose by ceric ions. It was observed that graft copolymerization occurred only with methyl methacrylate (MMA) and methyl acrylate monomer. The variables such as initiator concentration, monomer concentration, time of grafting, and nitrocellulose content on grafting of MMA are discussed. By hydrolyzing away the nitrocellulose backbone, the grafted poly(methyl methacrylate) branches were isolated and the >c?o peak at 1740 cm?1 in the infrared spectra of these isolated branches gave definite evidence of grafting. The molecular weight of isolated branches has been determined by viscometry. The probable mechanism of grafting may be at the α-carbon atom of primary alcohol or at a C2-C3 glycol group of the anhydro glucose unit or at the hemiacetal group of the end unit of nitrocellulose, as nitrocellulose is formed by the partial nitration of cotton cellulose.  相似文献   

3.
Effects of water contained in the sample, the type of sensitizer, and the nature of vinyl monomer on vapor phase photografting on cellulose were investigated at 60°C. The grafting was enhanced by the water contained in the cellulose sample, resulting in an increased percent grafting with increasing the quantity of water. The use of sensitizers such as ferric chloride, ferrous sulfate, ceric ammonium nitrate, hydrogen peroxide, benzophenone, and sodium anthraquinone-2,7-disulfonate led to accelerated graftings. However, the maximum grafting was observed at an optimum quantity of sensitizer for each sensitized system, and the formation of grafted polymer was restricted by the use of sensitizer beyond the quantity. Ferric chloride and hydrogen peroxide exhibited higher activities among the sensitizers. With respect to the nature of monomer, methyl methacrylate, acrylic acid, methacrylic acid, and acrylonitrile were observed to be introduced into cellulose substrate by the vapor phase photografting, though no initiation was recorded for styrene and N-vinylpyrrolidone. However, the latter monomers were introduced by using monomer mixtures with acrylonitrile, affording a maximum percent grafting at a certain monomer composition.  相似文献   

4.
Graft copolymers of acrylonitrile (ACN), methyl methacrylate (MMA), and their mixtures on carboxy methyl cellulose (d.S 0.4–0.5) were prepared by the use of ceric ion initiator in aqueous medium. The graft copolymers were characterized by IR spectroscopy. The extent of graft copolymerization of ACN and MMA was measured in terms of graft level, molecular weight of grafted polymer chains, and the frequency of grafting as functions of ceric ion concentration. It was found that at comparable reaction conditions, the molecular weight of the grafted polymer chains and the frequency of grafting were not of the same order of magnitude. For the monomer mixtures, the copolymer compositions obtained from the total nitrogen contents of the copolymer samples showed that a disproportionately low amount of ACN monomeric units were incorporated into the graft copolymer, even at high ACN content of the feed. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Electron microscopical observations of radiation-induced rayon–styrene graft copolymers were published by Kaeppner and Huang in 1965. The present paper reports electron microscopical investigations on the relationship of the structure of vinyl–cotton graft polymers to the original morphology of the cotton fiber and into the distribution of the grafted vinyl polymer in the cotton fiber structure. The grafted vinyl monomers investigated in this study were acrylonitrile, styrene, methyl methacrylate, and vinyl acetate. Two radiation-induced procedures were used: simultaneous irradiation grafting and post-irradiation grafting. Ceric ion grafting of acrylonitrile to cotton was included for purposes of comparison. Distribution of the vinyl polymer within the cotton fiber is illustrated by a series of electron micrographs, selected as typical of the particular grafted species under consideration. Results indicate that the diffusion rate of monomer into the cellulose fiber plays an important role in the final distribution of polyacrylonitrile grafts within the fiber. Uniform distribution of polyacrylonitrile in the fiber was achieved by simultaneous irradiation grafting of acrylonitrile on a highly substituted cyanoethylated cotton. In samples of low degree of cyanoethylation the distribution of graft polymer was non-uniform. In grafting initiated by ceric ion the acrylonitrile graft polymer was evenly distributed. Polystyrene–cotton copolymers from grafts, made by simultaneous irradiation of cotton in methanol solutions of the styrene monomer, were uniform throughout the fiber but showed opening of structure associated with the amount of graft formed. Grafting of methyl methacrylate occurred only in the peripheral regions of the fiber; by contrast, grafting of vinyl acetate was uniform throughout the fiber wall. Important factors governing the successful irradiation grafting in cotton fibers are choice of solvent, ratio of monomer to cellulose, nature of prior chemical modification of the cellulose, and total irradiation dosage.  相似文献   

6.
The graft copolymerization of acrylamide–methylacrylate comonomers was carried out using ceric ammonium nitrate as initiator in the presence of nitric acid at 25 ± 1°C. The effects of feed molarity, feed composition, reaction time, and temperature on graft yield (%G) and other grafting parameters were investigated. The determination of rate of ceric (IV) ions disappearance as a function of feed molarity and reaction time was useful in the determination of the rate of ceric (IV) ions consumption during graft copolymerization. The graft yield (%G) in the presence of acrylamide increases because of the synergistic effect of acrylamide comonomer. The composition of the grafted chains (FAAm) varies on varying the feed composition and reaction temperature but is almost constant during feed molarity variation. The Mayo and Lewis method was used to determine the reactivity ratios of acrylamide (r1) and methylacrylate (r2), which are 0.65 and 1.07, respectively. The product of reactivity ratio (r1 r2) is less then unity; hence, an alternate arrangement of comonomer blocks in the grafted copolymer chain is proposed. The rate of graft copolymerization of comonomers onto cellulose is second power to the concentration of comonomers and square root to the concentration of ceric ammonium nitrate. Suitable reaction steps for graft copolymerization of comonomers onto cellulose are proposed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2631–2642, 2002  相似文献   

7.
Acrylonitrile was grafted onto cellulose with the use of ceric salt as initiator and the grafting was found to be maximum at 0.6N acid concentration. The effect of monomer and initiator concentration on the extent of grafting was studied. A new method for quantitative estimation of extent of grafting on cellulose was developed and its validity was established. The grafted samples with 20% increase in weight were found to be highly resistant to microorganisms.  相似文献   

8.
The study of graft copolymerization of methyl methacrylate, acrylonitrile, and acrylamide onto both defatted and bleached jute fibers using the ferrous ammonium sulfate / H2O2 redox initiator system has been made. To determine the optimum conditions of grafting, the effects of concentrations of ferrous ammonium sulfate, monomer, H2O2; time and temperature on percentage of graft yield have been studied. Acrylamide was found to graft onto the fiber only at a fixed ferrous ammonium ion concentration (5 × 10?4M). Kinetic studies showed that the rates of grafting follow the second-order mechanism. The activation energies of the reactions were found to be 3.351 and 2.53 kcal/mol in the methyl methacrylate and acrylonitrile systems, respectively. The grafted fibers have been characterized by thermogravimetric analysis, IR spectroscopy, and XRD studies.  相似文献   

9.
The graft copolymerization of acrylamide (AAm) and ethylmethacrylate (EMA) monomers onto cellulose has been carried out using ceric ammonium nitrate (CAN) as initiator in presence of nitric acid at (25 ± 1)°C and varying feed molarity from 7.5 × 10?2 mol dm?3 to 60.0 × 10?2 mol dm?3 at fixed feed composition (fAAm = 0.6). The graft yield (%GY) has shown a linear increasing trend upto a feed molarity of 37.5 × 10?2 mol dm?3. The composition of grafted copolymer chains was found to be constant (FAAm = 0.56) during feed molarity variation but shown variations with feed composition (fAAm) and reaction temperature. The grafting parameters have shown increasing trends up to 7.5 × 10?3 mol dm?3 concentration of ceric (IV) ions and decreased on further increasing the concentration of ceric (IV) ions beyond 7.5 × 10?3 mol dm?3. The IR and elemental analysis data were used to determine the composition of grafted chains (FAAm) and reactivity ratio of acrylamide (r1) and ethylmethacrylate (r2) comonomers. The reactivity ratio for acrylamide (r1) and ethylmethacrylate (r2) has been found to be 0.7 and 1.0 respectively, which suggested for an alternate arrangement of average sequence length of acrylamide (mM?1) and ethylmethacrylate (mM?2) in grafted chains. The rate of graft copolymerization of comonomers onto cellulose was found to be proportional to square concentration of comonomers and square root to the concentration of ceric (IV) ions. The energy of activation (ΔEa) of graft copolymerization was found to be 9.57 kJ mol?1 within the temperature range of 20–50°C. On the basis of experimental findings, suitable reaction steps have been proposed for graft copolymerization of selected comonomers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2546–2558, 2006  相似文献   

10.
The use of tetravalent ceric ions to initiate graft-copolymerization of methyl methacrylate onto silk has been investigated. The rate of grafting has been determined by varying monomer, cerium (IV), temperature, and nature of silk. The graft yield increases with increasing monomer concentration up to 0.65 mol/l and with further increase of monomer, the graft yield decreases. The percentage of grafting increases with increasing ceric ion concentration up to 0.03 mol/l and thereafter it decreases. The rate of reaction is temperature dependent, with increasing temperature, the graft yield increases. The grafting is considerably influenced by chemical modification prior to grafting. The effect of different species of ceric ion and CuSO4 on the rate of grafting has also been investigated.  相似文献   

11.
Graft copolymerization of methyl acrylate (MA) and acrylonitrile (AN) onto acacia cellulose was carried out using free radical initiating process in which ceric ammonium nitrate (CAN) was used as an initiator. The optimum grafting yield was determined by the certain amount of acacia cellulose (AGU), mineral acid (H2SO4), CAN, MA, and AN at 0.062, 0.120, 0.016, 0.397, and 0.550 mol L?1, respectively. The poly(methyl acrylate‐co‐acrylonitrile)‐grafted acacia cellulose was obtained at 55°C after 2‐h stirring, and purified acrylic polymer‐grafted cellulose was characterized by FTIR and TG analysis. Therein, the ester and nitrile functional groups of the grafted copolymers were reacted with hydroxylamine solution for conversion into the hydroxamic acid and amidoxime ligands. The chelating behavior of the prepared ligands toward some metal ions was investigated using batch technique. The metal ions sorption capacities of the ligands were pH dependent, and the sorption capacity toward the metal ions was in the following order: Zn2+ > Fe3+ > Cr3+ > Cu2+ > Ni2+. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Styrene was graft-copolymerized onto wood cellulose by the ceric ion method of Mino and Kaizerman. The grafting reaction was found to depend strongly on the concentration of ceric ion in the grafting system and maximum grafting occurred in a narrow range of concentration of initiator, 1.0 × 10?3-1.8 × 10?3 mol/l, at 58 ± 1°C. A pretreatment technique, developed to enhance the monomer diffusion into cellulose, was found to increase the grafting considerably. The structures of the cellulose-styrene graft copolymers were studied by hydrolyzing away the cellulose backbone to isolate the grafted polystyrene branches. The molecular weight and the molecular weight distributions of the grafted polystyrene were determined using gel permeation chromatography. The number-average molecular weight (M?n) ranged from 23,000 to 453,000 and the polydispersity ratios (M?w/M?n) varied from 2.5 to 8.0. The grafting frequencies calculated from the per cent grafting and molecular weight data were of the order of 0.05–0.4 polystyrene branches per cellulose chain.  相似文献   

13.
Graft copolymerization of methyl methacrylate on cellulose samples was carried out using various initiator systems, and extraction treatment was performed on the copolymers with 50% to 300% grafting by weight. Adding of ceric ion to a suspension of cellulose and methyl methacrylate in water resulted in more efficient grafting than other methods. That is, amount of extracted cellulose from graft copolymers obtained by the conventional ceric ion method was approximately 20%, whereas those obtained either by the hydrogen peroxide method or by the adsorbed ceric ion method amounted to 70% to 80%. However, the amount of extracted homopolymer was approximately proportional to that of extracted cellulose. The composition of refined samples ranged 20% to 30% of cellulose content and 70% to 80% of poly(methyl methacrylate) content throughout all samples, and it was recognized that the proportion of poly(methyl methacrylate) tended to increase slightly with higher per cent grafting. When the structure of refined graft copolymer was derived from these values, it was recognized that the extent of the grafted chain was at most 1 mole per 1 mole of cellulose molecule in the conventional ceric ion method and amounted to only 1/10 mole in the hydrogen peroxide and adsorbed ceric ion methods.  相似文献   

14.
Seven monomers, which varied widely in water solubility and ionic charge, were graft polymerized onto both unswollen starch and starch that had been swollen by heating in water to 60°C. Polymerizations were initiated with ferrous ammonium sulfate hexahydrate–hydrogen peroxide and, where applicable, with ceric ammonium nitrate. Graft copolymers were freed of ungrafted homopolymer by solvent extraction and were characterized by weight percentage of synthetic polymer incorporated in the graft copolymer, molecular weight of grafted branches, and grafting frequency. The influence of starch granule swelling on graft copolymer structure varied with the monomer used and could not be predicted on the basis of water solubility of monomer or its resulting polymer. With acrylonitrile and acrylamide, swollen starch gave higher molecular weight and less frequent grafts than unswollen starch. However, methyl methacrylate, N,N-dimethylaminoethyl methacrylate · HNO3, N-t-butylaminoethyl methacrylate. HNO3, and 2-hydroxy-3-methacryloyloxypropyltrimethylammonium chloride produced less frequent graft of higher molecular weight when starch was unswollen. With acrylic acid, graft molecular weight was independent of starch granule swelling, although grafting was less frequent when swollen starch was used.  相似文献   

15.
Graft copolymerization of acrylonitrile, methyl methacrylate, and vinyl acetate on bleached holocellulose initiated by ceric ions in aqueous medium was studied at 29°C. The extent of graft copolymer formation was poly(methyl methacrylate) > polyacrylonitrile > poly(vinyl acetate), indicating the influence of polarity of monomer on graft copolymerization. It was found that, although the molecular weights of the grafted polyacrylonitrile copolymer were lower than the values obtained for poly(methyl methacrylate), the latter was less frequently incorporated on the cellulosic backbone polymer than the polyacrylonitrile grafts. The marked reductions in graft level associated with thiolation of the cellulosic material suggest that hydrogen abstraction reactions from carbon atom carrying hydroxyl groups may not be important in graft copolymer formation.  相似文献   

16.
Grafting of vinyl monomers onto cellulose-thiocarbamate was carried out using ceric ammonium sulfate (CAS) as an initiator. The graft yield was found to depend on the amount of thiocarbamate groups, initiator, and monomer concentrations as well as temperature. The graft yield increased with increasing (CAS) concentration. The reactivity of vinyl monomers studied followed the order ethyl acrylate>acrylonitrile. A comparison between the graft yields obtained with the modified cullulose indicated that cellulose thiocarbamates having less than 1.1% nitrogen showed lower graft yields than the unmodified cellulose. Above this, cellulose thiocarbamate was much more amenable to grafting than the unmodified cellulose. The grafted cellulose thiocarbamates exhibited high antifungal activity and had no effect on gram-negative, gram-positive bacteria and yeast. The maximum zone of inhibition was obtained after grafting with 2 h which resulted in 43 and 50% add-on polymer in the cases of acrylonitrile and ethyl acrylate, respectively. Grafted cellulose thiocarbamates with acrylonitrile had higher potency for antifungal activity than that grafted with ethyl acrylate.  相似文献   

17.
Cotton cellulose yarn was grafted with methyl acrylate, ethyl acrylate, n-butyl acrylate, and methyl methacrylate at various percentages of grafting. The effects of concentration of the initiator, concentration of the acid, and of temperature on grafting was studied and the mechanism discussed. The effect of reactivity of the monomer on the percentage graft-on is pointed out. Thermal behavior of natural and grafted cotton yarn was studied using dynamic thermogravimetry in air at a heating rate of 6°C/min up to a temperature of 500°C. The thermal stabilities of the samples grafted with various acrylate monomers to various percentages of grafting were computed from their primary thermograms by calculating the values of IDT, IPDT, and E*. The results show that the thermal stability increases with increase in graft-on per cent, and the thermal stabilities of natural cotton and cotton grafted with different monomers are in the order ethyl > methyl > natural cellulose > methyl methacrylate > n-butyl acrylate.  相似文献   

18.
The use of tetravalent ceric ions to initiate graft-copolymerization of methyl methacrylate onto natural rubber (NR) has been investigated. The rate of grafting has been determined by varying the concentration of monomer and cerium(IV), the temperature and the solvents. The graft yield increases with increasing monomer concentration up to 1.877 M, with further increase of the monomer, the graft yield decreases. The percentage of grafting increases with increasing cerium(IV) concentration up to 0.035 M, thereafter it decreases. With increasing temperature the graft yield increases. The effect of CuSO4 on the rate of grafting has also been investigated. A plausible mechanism has been suggested and the kinetic rate expressions have been derived.  相似文献   

19.
Free-radical grafting on natural and synthetic polymers is a method widely used to modify these polymers chemically. A number of these chemical systems show an unexpected behaviour of the polymerization rate when the monomer concentration is sufficiently high: it decreases and sometimes it increases afterwards. Here, the effect of varying the monomer concentration on the graft yield when grafting methyl acrylate, vinyl acetate and a mixture of both monomers onto cellulose initiated by ceric ions is discussed, considering a three-component mechanism of grafting (mechanisms from, onto and from-to). It is suggested that the unexpected behaviour indicated above is accounted for by the presence of the grafting mechanism from-to. Some knowledge about the copolymer structure can be reached by using this mechanistic approach.  相似文献   

20.
Graft copolymerization of acrylamide (AAm) and ethyl acrylate (EA) onto cellulose has been carried out from their binary mixtures using ceric ammonium nitrate (CAN) as an initiator in the presence of nitric acid at 25 ± 1 °C. The extent of acrylamide grafting increased in the presence of the EA comonomer. The composition of the grafted chains (FAAm = 0.52) was found to be constant during the feed molarity variation from 7.5 × 10?2 to 60.0 × 10?2 mol L?1, whereas the composition of the grafted chains (FAAm) was found to be dependent on feed composition (fAAm) and reaction temperature. The effects of ceric(IV ) ion concentration, reaction time and temperature on the grafting parameters have been studied. The grafting parameters showed an increasing trend up to 6.0 × 10?3 mol L?1 concentration of CAN at a feed molarity of 30.0 × 10?2 mol L?1 and showed a decreasing trend on further increasing the concentration of CAN (>6.0 × 10?3 mol L?1) at a constant concentration of nitric acid (5.0 × 10?2 mol L?1). The composition of the grafted chains (FAAm) was determined by IR spectroscopy and nitrogen content and the data obtained then used to determine the reactivity ratios of the acrylamide (r1) and ethyl acrylate (r2) comonomers by using a Mayo and Lewis plot. The reactivity ratios of acrylamide and ethyl acrylate were found to be r1 = 0.54 and r2 = 1.10, respectively, and hence the sequence lengths of acrylamide (m?M1) and ethyl acrylate (m?M2) in the grafted chains are arranged in an alternating form, as the product of the reactivity ratios of acrylamide and ethyl acrylate (r1 × r2) is less than unity. The rate of graft copolymerization of the comonomers onto cellulose was found to be dependant on the ‘squares’ of the concentrations of the comonomers and on the ‘square root’ of the concentration of ceric ammonium nitrate. The energy of activation (ΔEa) of graft copolymerzation was found to be 5.57 kJ mol?1 within the temperature range from 15 to 50 °C. On the basis of the results, suitable reaction steps have been proposed for the graft copolymerzation of acrylamide and ethyl acrylate comonomers from their mixtures. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号