首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last years, metallic crushers substituted granite stone mill with some variations in the organoleptic oil characteristics. To control the influence of the crushing method on the yield and oil quality, the olive pastes were obtained using three different ways: (i) new metallic crusher at mobile knives; (ii) granite stone mill; (iii) double olive crushing by the metallic crusher and the granite stone mill. With the aim to ascertain the useful use of a new metallic crusher (at mobile knives), experimental tests were carried out in an industrial oil mill. This oil mill is equipped by a centrifugal decanter generating two oil flows: first and second extraction (recovery) oils. The results showed that the yields obtained by different methods were satisfactory. No statistically significant differences have been observed in terms of oil yield and quality when different crushing devices were used. All first extracted oils are extra virgin with similar organoleptic characteristics, especially for the fruity intensity and for the bitter and pungent taste, as confirmed by the composition of volatile substances and the content of phenolic oil compounds. The recovery oils (second extraction oils) showed, in contrast to first extraction oils, a more intense green colour and a higher content of total phenols. Practical applications: Processing of sound olives with the right ripening grade and good quality allows to easily obtain an extra virgin olive oil, with commercial qualitative parameters according to the European Union requirements. However, different olive crushing systems affect the concentrations of some compounds responsible of aroma and taste (phenolic compounds). The use of the more violent metallic crushers facilitates obtaining oils with total phenol content higher than when using a stone mill. Here we used a particular metallic crusher (at knives) that, however, is suitable to replace the granite stone mill when a less pungent and bitter oil is required.  相似文献   

2.
Oil extraction experiments with three olive varieties (Coratina, Nebbio, and Grossa di Cassano) were carried out to compare the two-phase centrifugal decanter with conventional three-phase equipment. The results showed that the two-phase centrifugal extractor renders better qualitative characteristics in the oils, which were comparable to pressed or filtered oils. The two-phase decanter product exhibited higher contents of polyphenols,ortho-diphenols, hydroxytyrosol, tocopherols,trans-2-hexenal and total aromatic volatile substances. Furthermore, the oils received a higher sensorial score and were characterized by higher values of oxidative stability and campersterol/stigmasterol ratio; lower values of turbidity, alcohol index and chromatic indices; lower content of pigments, steroid hydrocarbons, stigmastatriene, waxes and aliphatic and triterpenic alcohols.  相似文献   

3.
Mature ‘Chondrolia Chalkidikis’ olives were processed in an industrial olive oil mill equipped with a three‐phase decanter. Water was added to the decanter at a 1:2 water‐to‐paste ratio. Olive mill waste water (ΟΜWW) was used to replace the added water at a rate of 50 or 100%. Following the final separation, the obtained oil was used for chemical analysis and sensory evaluation. All oils had similar acidity, peroxide and Κ values. OMWW‐treated olive oils presented higher total phenolic content and higher antioxidant activity based on DPPH and oven tests, but lower chlorophyll and carotenoids content. However, there was no significant difference between the 50 and 100% replacement. The phenolic profile of the treated olive oils analyzed by quantitative 1Η NMR revealed more than twofold oleocanthal and oleacein as well as oleuropein and ligstroside aglycone contents than in the control. Sensory evaluation of treated oils also showed an enhancement of fruity, bitter and pungent attributes compared to the control.  相似文献   

4.
Phenolic compounds are of fundamental importance to the quality and nutritional properties of virgin olive oils. In this paper, the high-performance liquid chromatographic analysis of simple and complex olive oil phenols in the streams generated in the two-phase extraction system was carried out using Arbequina and Picual olives. The malaxation stage reduced the concentration of orthodiphenols in oil ca 50–70%, while the concentration of the nonorthodiphenols remained constant, particularly the recently identified lignans 1-acetoxypinoresinol and pinoresinol. Oxidation of orthodiphenols at laboratory scale was avoided by malaxing the paste under a nitrogen atmosphere. Phenolic compounds in the wash water used in the vertical centrifuge were also identified. Hydroxytyrosol, tyrosol, the dialdehydic form of elenolic acid linked to hydroxytyrosol were the most representative phenols in these waters. Hence, phenolic compounds in the wash waters came from both the aqueous and the lipid phases of the decanter oily must.  相似文献   

5.
The chemical composition of commercial Cornicabra virgin olive oils (n=65) was studied, as was its relationship with oil quality and the influence of the extraction method and production year. The main characteristics of these olive oils were: oxidative stability 53 ± 24 h, mean polyphenol content 162 ± 57 mg/kg (as gallic acid), oleic acid 80.8 ± 0.9%, linoleic acid 4.6 ± 0.6%, and campesterol 4.3 ± 0.1%, which is peculiar to this variety. No clear differences in composition were observed with respect to the different extraction systems (dual-phase/triple-phase decanters and pressure), although oils produced by the dual-phase decanter showed higher oxidative stability and polyphenol content. There were significant differences in major fatty acids and sterols according to the production year.  相似文献   

6.
High-field (600 MHz) nuclear magnetic resonance (NMR) spectroscopy was applied to the direct analysis of virgin olive oil. Minor components were studied to assess oil quality and genuineness. Unsaturated and saturated aldehyde resonances, as well as those related to other volatile compounds, were identified in the low-field region of the spectrum by two-dimensional techniques. Unsaturated aldehydes can be related to the sensory quality of oils. Other unidentified peaks are due to volatile components, because they disappear after nitrogen fluxing. The statistical analysis performed on the intensity of these peaks in several oil samples, obtained from different olive varieties, allows clustering and identification of oils arising from the same olive variety. Diacylglycerols, linolenic acid, other volatile components, water, acetic acid, phenols, and sterols can be detected simulteneously, suggesting a useful application of high-field NMR in the authentication and quality assessment of virgin olive oil.  相似文献   

7.
8.
The effects of the cold percolation system on the quality of virgin olive oil from two different Italian cultivars (Coratina and Oliarola) were determined. The quality was also compared with that of oil extracted with the current centrifugation system using a two‐phases decanter. Tests were performed in an industrial oil mill equipped with the two extraction systems. The oils extracted with cold percolation system showed, in all cases, lower free acidity, peroxide value, and ultraviolet (UV) absorption (K232 and K270) and higher polyphenol contents in comparison to oils obtained by two‐phases centrifugation. These results were confirmed by the autoxidation stability of the oils examined.  相似文献   

9.
Looking at the olive oil production, the final extraction phase from the paste affects the yield and the quality of the oil more than other processing steps. Several strategies are therefore applied today to increase the process outcome already before extraction at the malaxation stage. Technical innovation is particularly realized in adopting olive oil decanters that enable real‐time adjustments of working parameters in function of the different composition of the raw materials, improving the yield of the process and avoiding a significant economic loss for the sector. In the paper of Caponio, Summo, Paradiso and Pasqualone published in this issue of the European Journal of Lipid Science and Technology [1626–1633], the performance of the so‐called “third generation” decanter is presented showing the impact of its application on the chemical, nutritional, olfactory and sensorial quality in the sector of olive oil processing. The significance of the achieved results is underlined in the following commentary.  相似文献   

10.
Cross-batch contamination in a decanter centrifuge during virgin olive oil production cannot be avoided using current technology. The extent of this contamination is investigated using industrial-scale tests, by measuring the volatile profile and color on three consecutive oil batches, collected at the decanter outlet at different extraction times. The extent of contamination varied, pointing out qualitative consequences, as defective molecules are found. The latter are often active at low concentrations, and the measured cross-batch contamination can lead both to the downgrading of large batches of virgin olive oils and to the adulteration of monovarietal and certified productions. An innovative method, based on the direct determination of the color (L and a* coordinates) of oil at the outlet of the decanter is able to identify the same compositional change point indicated by gas chromatography, and could be successfully used to mitigate the effects of cross-batch contamination. Practical applications: An in-line colorimetric system can be implemented at the decanter outlet to detect the point of change between different olive batches. Otherwise, the virgin olive oil exiting from the decanter at the beginning of one batch can be collected separately in order to avoid the contamination due to the previous batch.  相似文献   

11.
Fruits from three Tunisian cultivars of Olea europea L. grown in the southeast of Tunisia were harvested at the maturity stage of ripeness and immediately processed with a laboratory mill. There are as yet no data on the chemical composition of virgin olive oils from the southeast of Tunisia, an area characterized by an arid condition of growth for olive trees. Our results showed significant differences in the analytical parameters examined for the three cultivars such as fatty acid composition, total phenols and o‐diphenols, and the content of chlorophylls and carotenoids, confirming the importance of genetic factors in the chemical characteristics of the oil. Headspace solid‐phase microextraction (HS‐SPME) was applied to the analysis of volatile compounds of virgin olive oils. Forty‐eight compounds were isolated and characterized by GC‐RI and GC‐MS, representing 94.1–98.1% of the total amount. (E)‐Hex‐2‐enal, the main compound extracted by SPME, characterized the olive oil headspace for all samples. So, it was clearly shown that there were qualitative and quantitative differences in the proportion of volatile constituents from oils of the various cultivars.  相似文献   

12.
The influence of the olive paste malaxation time on the composition and the industrial output of oil was investigated. To this purpose, three Italian olive varieties (Leccino, Dritta, Caroleo) were processed with a centrifugal system for six malaxation periods (0, 15, 30, 45, 60 and 75 min). The concentrations of the majority of the oil constituents changed during the malaxation. However, these changes were not significant for all of them: the contents of β‐carotene, the major xanthophylls, chlorophylls a and b, pheophytins a and b in the oils increased progressively with increasing malaxing times, whereas the contents of simple and hydrolysable phenols (secoiridoid derivatives), o‐diphenols and total phenols decreased. A significant increase in total volatiles and green volatiles of the lipoxygenase cascade (C6 aldehydes, C6 alcohols, C5 alcohols and C5 carbonyls) was detected. An opposite trend was observed for the green C6 esters. As a result, the global analytical quality, flavour, aroma and shelf‐life of the oils were negatively affected. The oil yield increased substantially up to 45 min of paste malaxation times. Beyond 60 min, the yields tended to decrease.  相似文献   

13.
Three Italian olive varieties (Caroleo, Leccino and Dritta) were processed by centrifugation in the oil mill. The olive paste was kneaded at 20, 25, 30 and 35 °C. The results achieved revealed that the oil content in green volatiles from lipoxygenase pathway (including C5 and C6 compounds and especially unsaturated C6 aldehydes) decreased progressively as the kneading temperature increased, dropping markedly at 35 °C. The content of phenols, o‐diphenols and secoiridoids showed an opposite trend, but the temperature of 35 °C was critical also for them, as it was for the majority of the other components, analytical parameters and indices related to quality, typicality and genuineness. In general, an increasing kneading temperatures increased the release of oil constituents from the vegetable tissue. This factor also affected the oil extraction yields. The best overall results were achieved by malaxing the olive paste at 30 °C. In fact, this temperature level led to achieving both pleasant green virgin olive oils and satisfactory oil extraction outputs.  相似文献   

14.
The main objective of this research was to determine the extent to which irrigation practices affect the partitioning of phenolic compounds between olive paste, pomace, olive oil and wastewater. The current paper also aimed to study the effect of technological natural micro‐talc (NMT) addition during the oil extraction process on the partitioning of the phenolic compounds between solid and liquid phases. The results obtained in this study showed that irrigation applied to olive trees let to a considerable decrease in the phenol content of the olive paste. The water status of the trees affected the phenol synthesis in the olive fruit, and consequently the phenol content of the olive paste, more than the partitioning of the phenolic compounds during the olive oil extraction process. The most remarkable point of the phenol partitioning was related to the simple phenols. While in the samples from non‐irrigated trees the greater proportion of these phenols partitioned into the pomace, in samples from irrigated trees most of them were lost in the wastewater. After comparison of the results obtained from the experiments with and without NMT addition, it was concluded that the use of that co‐adjuvant did not significantly alter either the phenolic profile of the oil phase obtained or the content of the individual phenolic compounds.  相似文献   

15.
Mislabeling of olive oil with respect to its geographical origin is a frequently encountered fraud. Although according to European Regulation (EU) No 29/2012 it is mandatory to declare the geographical origin of an olive oil on the label, no generally accepted analytical method exists to verify this labeling. As Italy, Greece, and Spain are the main producing countries in the Mediterranean Area, the aim is to develop an analytical method that allows classification of these three origins and which can be reliably applied to routine samples. A protocol for the extraction and subsequent 1H‐NMR measurement of the polar fraction of olive oil is developed and applied to a large number of authentic reference samples. A classification model is developed which obtains 96% of correct classification during cross‐validation. The method is being routinely applied for testing commercial off‐the‐shelf olive oils, and its accuracy is continuously verified. Practical Applications: In addition to checking the geographical origin of an olive oil, the developed protocol allows to analyze the polar constituents of an olive oil in great detail with little effort, which should prove useful also for other applications, for example, quantitation of phenols or detection of admixtures with other vegetable oils.  相似文献   

16.
Research has been carried out to ascertai the effects of different processing systems on olive oil quality. Tests were performed in industrial oil mills that were equipped with both pressure and centrifugation systems. Results show that oils extracted from good-quality olives do not differ in free fatty acids, peroxide value, ultraviolet absorption and organoleptic properties. Polyphenols ando-diphenols contents and induction times are higher in oils obtained from good-quality olives by the pressure system because it does not require addition of water to the olive paste. The centrifugation system requires the addition of warm water to the olive paste and helps to obtain oils with a lower content of natural antioxidants. Oils obtained from poorquality or from ripe olives in continuous centrifugal plants are lower in free fatty acids than those obtained by the pressure system. Dr. Mario Solinas is deceased—May 23, 1993.  相似文献   

17.
Virgin olive oil (VOO) consumption is increasing all over the world due to its excellent organoleptic and nutraceutical properties. These beneficial traits stand from a prominent and well‐balanced chemical composition, which is a blend of major (98% of total oil weight) and minor compounds including antioxidants. The main antioxidants are phenolic compounds, which can be divided into lipophilic and hydrophilic phenols. While lipophilic phenols such as tocopherols can be found in other vegetable oils, most hydrophilic phenols in olive oil are exclusive of the Olea europaea species endowing it with a chemotaxonomic interest. This review is focused on VOO antioxidant profile and, particularly, on hydrophilic phenols that are divided into different sub‐families such as phenolic acids and alcohols, hydroxy‐isochromans, flavonoids, secoiridoids, lignans and pigments. Analytical methods for qualitative and/or quantitative determination of these compounds are assessed. The implementation of efficient sample preparation protocols, separation techniques such as liquid chromatography, GC and capillary electrophoresis, as well as detection techniques such as ultraviolet absorption, fluorescence or MS are critical to succeed in the quality of the results. The effects of hydrophilic phenols on increasing VOO stability, its nutraceutical interest and organoleptic properties are also considered.  相似文献   

18.
Two‐phase decanter olive pomace (TPOP) is the by‐product of a centrifugation system, used to produce olive oil, that separates olive oil and moist pomace. The water content in these olive pomaces is about 70%, while it was 45‐50% in the olive pomace stemming from three‐phase systems (oil, water, and pomace) and 30% in the old press system. The aim of this work is focused on quantification and changes undergone during olive pomace storage in ponds of esters of fatty acids with short‐chain linear alcohols, which can be considered as a refining loss. The results indicate that oil deterioration increases very rapidly, in particular when oil is extracted from the TPOP surface. Special attention should be paid to the storage of TPOP, establishing a maximum of 2 months in all cases.  相似文献   

19.
The European Parliament identifies virgin olive oil (VOO) as one of the foods which are often subject to fraudulent activities. Possibilities of adulteration are the application of illegal soft deodorization of extra virgin olive oil (EVOO) or the commercialization of blends of EVOO with soft‐deodorized EVOO or refined vegetable oils. Despite the search for possibilities to prove the illegal soft deodorization of EVOO or the addition of cheaper vegetable oils to EVOO, suitable methods are still missing. Therefore, the aim of the study is to develop a new analytical and statistical approach addressing detection of mild deodorization or addition of refined foreign oils. For this purpose, VOOs are treated in lab‐scale for 1 h up to 28 days at different temperatures (20, 50, 60, 80,100, 110, and 170 °C) in order to simulate and study the effect of heat treatment on known analytical parameters by near infrared spectroscopy (NIR). A logit regression model enabling the calculation of the probability for a heat treatment is developed. This new methodology allows detecting both soft deodorized olive oils and blends of EVOO with cheaper full refined vegetable oils. Adding only 10% of full refined oil could be detected in extra VOO. Practical Applications: NIR methods combined with chemometrics have become one of the most attractive analytical tools to control quality of food. It is a simple, precise, and rapid method. All relevant analytical parameters of oxidative and thermal fat degradation can be determined in a single run and be used to detect adulterated virgin olive oils (VOOs). The use of a simple equation developed from the logistic regression using peroxide value, K‐values, p‐anisidine value, pyropheophytine, 1,2‐diacylglycerols, total polar compounds and monomeric oxidized triacylglycerols, and other well‐known parameters allows to detect mild deodorized olive oils or also blends of VOO with soft‐deodorized ones or the addition of low amounts of foreign vegetable oils. This technique has potential to be used as a screening method for the detection of adulterated olive oils using both the traditional laboratory methods and the corresponding NIR‐methods.  相似文献   

20.
13C NMR spectra of oil fractions obtained chromatographically from 109 vegetable oils were obtained and analyzed to evaluate the potential use of those fractions in the classification of vegetable oils and to compare the results with the NMR analysis of complete oils. The oils included the following: virgin olive oils from different cultivars and regions of Europe and north Africa; “lampante” olive, refined olive, refined olive pomace, hazelnut, rapeseed, high-oleic sunflower, corn, grapeseed, soybean, and sunflower oils; and mixtures of virgin olive oils from different geographical origins. Oils were divided into two sets of samples. The training set (98 samples) was employed to select the variables that resulted in significant discrimination among the different oil classes. By using stepwise discriminant analysis, more than 98% of correct validated assignments were obtained; these results were confirmed when applied to the test set (11 blind samples). Results suggest that the use of oil fractions considerably increases the discriminating power of NMR in the analysis of vegetable oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号