共查询到20条相似文献,搜索用时 5 毫秒
1.
2.
G. Asensio C. Moreno 《International journal for numerical methods in engineering》2003,57(7):991-1014
The return mapping algorithm is one of the most efficient procedures to solve elasto‐plastic problems. However, a criticism that may be lodged against this method is the difficulty of the practical computation of the consistent tangent matrix when the return is non‐radial. Much research has been done to handle this matrix. In this paper, a unified approach is presented in such a way that a simple closed‐form expression gives the consistent tangent matrix for the classical constitutive relations (von Mises, Tresca, Mohr–Coulomb, Drucker–Prager). The basic ideas are in the properties of eikonal equations appearing in several fields as image treatment, short time computation in elastic waves and others. The same kinds of ideas can be extended to non‐classical models. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
3.
D. P. Adhikary C. T. Jayasundara R. K. Podgorney A. H. Wilkins 《International journal for numerical methods in engineering》2017,109(2):218-234
Three new contributions to the field of multisurface plasticity are presented for general situations with an arbitrary number of nonlinear yield surfaces with hardening or softening. A method for handling linearly dependent flow directions is described. A residual that can be used in a line search is defined. An algorithm that has been implemented and comprehensively tested is discussed in detail. Examples are presented to illustrate the computational cost of various components of the algorithm. The overall result is that a single Newton‐Raphson iteration of the algorithm costs between 1.5 and 2 times that of an elastic calculation. Examples also illustrate the successful convergence of the algorithm in complicated situations. For example, without using the new contributions presented here, the algorithm fails to converge for approximately 50% of the trial stresses for a common geomechanical model of sedementary rocks, while the current algorithm results in complete success. Because it involves no approximations, the algorithm is used to quantify the accuracy of an efficient, pragmatic, but approximate, algorithm used for sedimentary‐rock plasticity in a commercial software package. The main weakness of the algorithm is identified as the difficulty of correctly choosing the set of initially active constraints in the general setting. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
4.
5.
Trust‐region based return mapping algorithm for implicit integration of elastic‐plastic constitutive models 下载免费PDF全文
B. T. Lester W. M. Scherzinger 《International journal for numerical methods in engineering》2017,112(3):257-282
A new method for the solution of the non‐linear equations forming the core of constitutive model integration is proposed. Specifically, the trust‐region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic‐plastic models. Although attention here is restricted to these rate‐independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non‐quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared with other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared with existing algorithms. Through these efforts, it is shown that the utilization of a trust‐region approach leads to superior performance versus a traditional closest‐point projection Newton–Raphson method and comparable speed and robustness to a line search augmented scheme. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
6.
S. Grange 《International journal for numerical methods in engineering》2014,98(4):287-312
An integration procedure designed to satisfy plane stress conditions for any constitutive law initially described in 3D and based on classical plasticity theory is presented herein. This method relies on multi‐surface plasticity, which allows associating in series various mechanisms. Three mechanisms have ultimately been used and added to the first one to satisfy the plane stress conditions. They are chosen to generate a plastic flow in the 3 out‐of‐plane directions, whose stresses must be canceled (σ33,σ13, and σ23). The advantage of this method lies in its ease of use for every plastic constitutive law (in the general case of the non‐associated flow rule and with both nonlinear kinematic and isotropic hardening). Method implementation using a cutting plane algorithm is presented in its general framework and then illustrated by the example of a J2‐plasticity material model considering linear kinematic and isotropic hardening. The approach is compared with the same J2‐plasticity model that has been directly derived from a projection of its equations onto the plane stress subspace. The performance of the multi‐surface plasticity method is shown through the comparison of iso‐error and iso‐step contours in both formulations, and lastly with a case study considering a hollow plate subjected to tension. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
8.
J. YANG G. Z. WANG F. Z. XUAN S. T. TU 《Fatigue & Fracture of Engineering Materials & Structures》2013,36(6):504-514
Constraint can be divided into two conditions of in‐plane and out‐of‐plane, and each of them has its own parameter to characterize. However, in most cases, there exists a compound change of both in‐plane and out‐of‐plane constraint in structures, a unified measure that can reflect both of them is needed. In this paper, the finite element method (FEM) was used to calculate the equivalent plastic strain (ɛp) distribution ahead of crack tips for specimens with different in‐plane and out‐of‐plane constraints, and the FEM simulations based on Gurson–Tvergaard–Needleman (GTN) damage model and a small number of tests were used to obtain fracture toughness for the specimens with different constraints. Unified measure and characterisation parameter of in‐plane and out‐of‐plane constraints based on crack‐tip equivalent plastic strain has been investigated. The results show that the area APEEQ surrounded by the ɛp isoline ahead of crack tips can characterize both in‐plane and out‐of‐plane constraints. Based on the area APEEQ, a unified constraint characterisation parameter Ap was defined. It was found that there exists a sole linear relation between the normalised fracture toughness JIC/Jref and regardless of the in‐plane constraint, out‐of‐plane constraint and the selection of the ɛp isolines. The unified JIC/Jref−reference line can be used to determine constraint‐dependent fracture toughness of materials. The FEM simulations with the GTN damage model (local approach) can be used in obtaining the unified JIC/Jref−reference line for materials with ductile fracture. 相似文献
9.
Feng Lu Zhang Guang Zhang Ke-shi J. Q. Xu Yu Hai-dong 《International journal for numerical methods in engineering》2004,61(3):406-432
Based on the concept of continuum damage mechanics, an anisotropic damage model for single crystals under the theory of crystal plasticity is presented. Damage and inelastic deformations are incorporated in the proposed model which is developed within the framework of thermodynamics with internal state variables. The dependence of the plastic anisotropy on the damage evolution has been considered. The anisotropic damage is characterized kinematically here through a second-order damage tensor which is physically based. The proposed model can successfully describe the interaction between the evolution of micro-structure of single crystals such as lattice orientation and the hardness development of each slip system and the process of material degradation. The Newton–Raphson iterative scheme is used to integrate the constitutive equations that work directly with the evolution equations for the elastic deformation gradient. The consistent algorithmic tangent stiffness for the present algorithm is formulated. The prescribed algorithm together with the consistent algorithmic tangent stiffness has been implemented into the ABAQUS finite element code by using user subroutine. Using the loading processes with homogeneous deformations and simulation of the classical tensile test of a notched bar illustrate the basic aspects of the model described. Numerical simulations show the validation and performance of the present model and algorithm. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
10.
Y. G. MATVIENKO V. N. SHLYANNIKOV N. V. BOYCHENKO 《Fatigue & Fracture of Engineering Materials & Structures》2013,36(1):14-24
Full‐field three‐dimensional (3D) numerical analyses was performed to determine in‐plane and out‐of‐plane constraint effect on crack‐front stress fields under creep conditions of finite thickness boundary layer models and different specimen geometries. Several parameters are used to characterize constraint effects including the non‐singular T‐stresses, the local triaxiality parameter, the Tz ‐factor of the stress‐state in a 3D cracked body and the second‐order‐term amplitude factor. The constraint parameters are determined for centre‐cracked plate, three‐point bend specimen and compact tension specimen. Discrepancies in constraint parameter distribution on the line of crack extension and along crack front depending on the thickness of the specimens have been observed under different loading conditions of creeping power law hardening material for various configurations of specimens. 相似文献
11.
Xiaojia Wang Qingchun Meng Weiping Hu 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(6):1373-1386
Fatigue damage of butt‐welded joints is investigated by a damage mechanics method. First, the weld‐induced residual stresses are determined by using a sequentially coupled thermo‐mechanical finite element analysis. The plastic damage of material is then calculated with the use of Lemaitre's plastic damage model. Second, during the subsequent fatigue damage analysis, the residual stresses are superimposed on the fatigue loading, and the weld‐induced plastic damage is considered as the initial damage via an elasto‐plastic fatigue damage model. Finally, the fatigue damage evolution, the relaxation of residual stress, and the fatigue lives of the joints are evaluated using a numerical implementation. The predicted results agree well with the experimental data. 相似文献
12.
G. Sarego Q. V. Le F. Bobaru M. Zaccariotto U. Galvanetto 《International journal for numerical methods in engineering》2016,108(10):1174-1197
In this work, the authors formulate a 2‐D linearized ordinary state‐based peridynamic model of elastic deformations and compute the stiffness matrix for 2‐D plane stress/strain conditions. This model is then verified by testing the recovery of elastic properties for given Poisson's ratios in the range 0.1–0.45. The convergence behavior of peridynamic solutions in terms of the size of the nonlocal region by comparison with the classical (local) mechanics model is also discussed. The degree to which the peridynamic surface effect influences the recovery of elastic properties is examined, and stress/strain recovery values are found to have a definite influence on the results. The technique used here can provide the basis for applying 2‐D peridynamic models to the study of fatigue failure and quasi‐static fracture problems. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
A totally implicit algorithm for plane stress multilayer plasticity is presented. The algorithm presents the plane stress version of the 3D/plane strain model for multilayer plasticity presented in a previous work. As in the 3D/plane strain case, the model is consistent with the principle of maximum dissipation and it may be considered as an extension of classical J2‐plasticity for anisotropic non‐linear kinematic behaviour preserving Masing's rules. In order to obtain the asymptotic second‐order convergence of the Newton algorithm, the consistent tangent moduli are also given. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
14.
Chongbin Zhao B. E. Hobbs H. B. Mühlhaus A. Ord 《International journal for numerical methods in engineering》1999,45(10):1509-1526
To translate and transfer solution data between two totally different meshes (i.e. mesh 1 and mesh 2), a consistent point‐searching algorithm for solution interpolation in unstructured meshes consisting of 4‐node bilinear quadrilateral elements is presented in this paper. The proposed algorithm has the following significant advantages: (1) The use of a point‐searching strategy allows a point in one mesh to be accurately related to an element (containing this point) in another mesh. Thus, to translate/transfer the solution of any particular point from mesh 2 to mesh 1, only one element in mesh 2 needs to be inversely mapped. This certainly minimizes the number of elements, to which the inverse mapping is applied. In this regard, the present algorithm is very effective and efficient. (2) Analytical solutions to the local co‐ordinates of any point in a four‐node quadrilateral element, which are derived in a rigorous mathematical manner in the context of this paper, make it possible to carry out an inverse mapping process very effectively and efficiently. (3) The use of consistent interpolation enables the interpolated solution to be compatible with an original solution and, therefore guarantees the interpolated solution of extremely high accuracy. After the mathematical formulations of the algorithm are presented, the algorithm is tested and validated through a challenging problem. The related results from the test problem have demonstrated the generality, accuracy, effectiveness, efficiency and robustness of the proposed consistent point‐searching algorithm. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
15.
S.H. Iftikhar J. Albinmousa 《Fatigue & Fracture of Engineering Materials & Structures》2018,41(1):235-245
Fatigue failure is a complex phenomenon. Therefore, development of a fatigue damage model that considers all associated complexities resulting from the application of different cyclic loading types, geometries, materials, and environmental conditions is a challenging task. Nevertheless, fatigue damage models such as critical plane‐based models are popular because of their capability to estimate life mostly within ±2 and ±3 factors of life for smooth specimens. In this study, a method is proposed for assessing the fatigue life estimation capability of different critical plane‐based models. In this method, a subroutine was developed and used to search for best estimated life regardless of critical plane assumption. Therefore, different fatigue damage models were evaluated at all possible planes to search for the best life. Smith‐Watson‐Topper (normal strain‐based), Fatemi‐Socie (shear strain‐based), and Jahed‐Varvani (total strain energy density‐based) models are compared by using the proposed assessment method. The assessment is done on smooth specimen level by using the experimental multiaxial fatigue data of 3 alloys, namely, AZ31B and AZ61A extruded magnesium alloys and S460N structural steel alloy. Using the proposed assessment method, it was found that the examined models may not be able to reproduce the experimental lives even if they were evaluated at all physical planes. 相似文献
16.
Generalized radial‐return mapping algorithm for anisotropic von Mises plasticity framed in material eigenspace 下载免费PDF全文
Daniele Versino Kane C. Bennett 《International journal for numerical methods in engineering》2018,116(3):202-222
A computationally efficient integration algorithm for anisotropic plasticity is proposed, which is identified as a generalization of the radial‐return mapping algorithm to anisotropy. The algorithm is based upon formulation within the eigenspace of a material anisotropy tensor associated with anisotropic quadratic von Mises (J2) plasticity (also called Hill plasticity), for which it is shown to ensure that the flow rule remains associative, ie, the normality condition is satisfied. Extension of the algorithm to include anisotropic elasticity (anisotropic elastoplasticity) is further provided, made possible by the identification of a certain fourth‐order material tensor dependent on both the elastic and plastic anisotropy. The derivation of the fully elastoplastically anisotropic algorithm involves further complexity, but the resulting algorithm is shown to closely resemble the purely plastically anisotropic one once the appropriate eigenspace is identified. The proposed generalized radial‐return algorithm is compared to a classical closest‐point projection algorithm, for which it is shown to provide considerable advantage in computational cost. The efficiency, accuracy, and robustness of the algorithm are demonstrated through various illustrative test cases and in the finite element simulation of Taylor impact tests on tantalum. 相似文献
17.
18.
P. LAZZARIN M. ZAPPALORTO 《Fatigue & Fracture of Engineering Materials & Structures》2012,35(12):1105-1119
By making use of the generalized plane strain hypothesis, an approximate stress field theory has been developed according to which the three‐dimensional governing equations lead to a system where a bi‐harmonic equation and a harmonic equation should be simultaneously satisfied. The former provides the solution of the corresponding plane notch problem, and the latter provides the solution of the corresponding out‐of‐plane shear notch problem. The system can be applied not only to pointed three‐dimensional V‐notches but also to sharply radiused V‐notches characterized by a notch tip radius small enough. Limits and degree of accuracy of the analytical frame are discussed comparing theoretical results and numerical data from FE models. 相似文献
19.
The paper deals with the modeling and the development of a numerical procedure for the analysis of shape-memory alloy (SMA)
elements in order to predict the main features of SMA devices. A 3D SMA model in the framework of small strain theory is developed
starting from the thermo-mechanical model proposed by Souza et al. (Eur J Mech A/Solids 17:789–806, 1998) and modified by
Auricchio and Petrini (Int J Numer Methods Eng 55:1255–1284, 2002). The aim of this paper is to propose some more modifications
to the original model, to derive its consistent 1D formulation, to clarify the mechanical meaning of the material parameters
governing the constitutive model. A robust time integration algorithm is developed in the framework of the finite element
method and a new beam finite element is proposed. Some numerical applications and a comparison with experimental data available
in literature are carried out in order to assess the ability of the proposed model to describe the SMA behavior. 相似文献
20.
Miles A. Buechler Darby J. Luscher 《International journal for numerical methods in engineering》2014,99(1):54-78
This paper presents a new implementation of a constitutive model commonly used to represent plastic bonded explosives in finite element simulations of thermomechanical response. The constitutive model, viscoSCRAM, combines linear viscoelasticity with isotropic damage evolution. The original implementation was focused on short duration transient events; thus, an explicit update scheme was used. For longer duration simulations that employ significantly larger time step sizes, the explicit update scheme is inadequate. This work presents a new semi‐implicit update scheme suitable for simulations using relatively large time steps. The algorithm solves a nonlinear system of equations to ensure that the stress, damaged state, and internal stresses are in agreement with implicit update equations at the end of each increment. The crack growth is advanced in time using a sub‐incremental explicit scheme; thus, the entire implementation is semi‐implicit. The theory is briefly discussed along with previous explicit integration schemes. The new integration algorithm and its implementation into the finite element code, Abaqus, are detailed. Finally, the new and old algorithms are compared via simulations of uniaxial compression and beam bending. The semi‐implicit scheme has been demonstrated to provide higher accuracy for a given allocated computational time for the quasistatic cases considered here. Published 2014. This article is a US Government work and is in the public domain in the USA. 相似文献