首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用气相沉积法和后续的电沉积法制备得到自支撑结构的MnOOH-石墨烯(graphene)-泡沫镍(NF)复合电极。使用XRD、SEM、XPS等方法对样品的物相、形貌和价态等进行表征,通过恒流充放电、循环伏安、交流阻抗等方法对电极的电化学性能进行研究。结果表明:该方法可以成功制备得到具有自支撑结构的MnOOH-graphene-NF复合电极,超薄的graphene层均匀覆盖在NF的表面,微米球状的MnOOH纳米片紧密覆盖在graphene的表面。该自支撑复合结构可以直接用作超级电容器电极进行测试,在5 mol/L KOH溶液中表现出了较大的赝电容储存能力。在0.5 A/g的电流密度下,最大比容量可达934 F/g。当电流密度提高为5 A/g时,比容量仍达771 F/g。当电流密度为2 A/g时,循环5000次后的容量保持率高达98%,库伦效率接近100%,表现出了良好的超级电容性能。本实验提供了一种制备自支撑MnOOH-graphene-NF复合电极的新方法,该复合电极有望成为一种潜在的新型超级电容器电极材料。   相似文献   

2.
3.
采用简易溶剂热法成功制备出了氮掺杂石墨烯(N-GNSs), 结构表征显示其形貌良好。X射线光电子能谱(XPS)结果表明在溶剂热过程中, 氧化石墨烯表面的大部分含氧功能团已被成功除去, 而且二甲基甲酰胺中的氮原子通过吡咯氮和石墨氮的形式成功掺杂到石墨烯结构中。作为电极活性材料, N-GNSs展现出优异的电容特性, 在2 mol/L KOH电解液中电流密度为0.5 A/g时比电容可达181.3 F/g。此外, N-GNSs还展示出良好的循环稳定性, 2000次连续循环后容量仍保持为初始数值的92.5%。因此, 氮掺杂石墨烯是一种潜在的超级电容器电极材料。  相似文献   

4.
通过Hummers法制备氧化石墨(Graphite oxide,GO),以三聚氰胺甲醛微球(MF)为模板经高温退火得到石墨烯泡沫。采用SEM、FT-IR、XPS、XRD、BET和元素分析等手段对石墨烯泡沫的形貌、组成以及结构进行了表征,将石墨烯泡沫用于超级电容器测量其电化学性能。SEM结果表明高温煅烧后,R-MF/GO仍可保持良好层状结构,并出现中空球状形貌;FT-IR、XPS及元素分析结果表明800℃退火下,GO中大部分含氧官能团被脱除,C/O原子比达到18.14,且掺杂氮的原子分数为11.5%左右。经过研究不同温度、浓度对石墨烯孔结构和组成的影响,发现MF与GO质量比为15∶3,退火温度为800℃时得到的泡沫比表面积最大,为128.67m2/g。同时,R-MF/GO用于超级电容器时性能最好,电容值可达121F/g。  相似文献   

5.
以硝酸镍和硝酸铝为原料,尿素作为还原剂和沉淀剂,通过水热法一步合成了不同配比的还原氧化石墨烯/Al-Ni层状双氢氧化物复合物(rGO/LDH)。用X射线衍射(XRD),红外光谱(FT-IR),拉曼光谱(Raman)和场发射扫描电镜(FESEM)对其结构和形貌进行物理表征。采用循环伏安,恒电流充放电等电化学方法系统研究了所制备样品的电化学性能。结果表明,当Al-Ni层状双氢氧化物(LDH)与还原氧化石墨烯(rGO)的配比为96.2∶3.8时,复合物具有最佳的电容性能。在电流密度为1A·g-1时,其比电容高达918.4F·g-1,远高于纯Al-Ni层状双氢氧化物(LDH)的比电容(732F·g-1)。  相似文献   

6.
本文首先采用高温化学气相沉积技术(CVD)在泡沫镍模板上生长三维石墨烯(3DG),然后利用化学浴沉积在石墨烯表面沉积碱式镍沉淀,氩气退火后得吸附氧化镍纳米片晶的石墨烯复合膜(3DG/NiO)。X-射线衍射(XRD)、拉曼(Raman)光谱、场发射扫描电子显微镜(FESEM)表征表明:泡沫镍表面生长了致密的三维石墨烯膜,层与层之间呈现明显的堆垛方式;石墨烯膜表面吸附了大量的NiO纳米片状晶体,相邻的纳米晶相互连接形成多孔结构。循环伏安(CV)曲线研究表明:3DG/NiO膜可作为兼具双电层电容和赝电容性能的复合型电极材料。充放电曲线研究表明:3DG/NiO电极的稳定充、放电比电容处于350~400F·g-1之间,300次循环后仅衰减1.12%,库仑效率保持在95%以上。  相似文献   

7.
氢氧化镍/还原氧化石墨烯复合物的超级电容性能   总被引:1,自引:0,他引:1  
黄振楠  寇生中  金东东  杨杭生  张孝彬 《功能材料》2015,(5):5084-5088,5094
采用共沉淀法制备了氢氧化镍/还原氧化石墨烯复合材料,并以此为电极研究了其超级电容性能。实验发现,六方氢氧化镍纳米片被成功插入到还原氧化石墨烯的层间,这有效抑制了还原氧化石墨烯和氢氧化镍的团聚,提高了电极的稳定性。当氢氧化镍和还原氧化石墨烯的质量比为5.5∶1时,显示了最佳的电化学性能:在-0.1~0.37V的电位窗口,1A/g的电流密度下,比电容高达1 036F/g;4A/g的电流密度下快速循环3 000次后,仍然保持70%的比电容。  相似文献   

8.
通过简单、低成本的化学浴沉积法在泡沫镍上原位生成了Zn-Ni 氢氧化物(Zn-Ni double hydroxides)纳米片。SEM观察结果表明, Zn-Ni 氢氧化物纳米片均匀附着在泡沫镍表面, 形成均一的多孔纳米片阵列层。此外, 还有大量的Zn-Ni 氢氧化物纳米片聚集成多孔团聚体, 分布于泡沫镍骨架的空隙处, 从而获得较高的活性物质负载量(4.27 mg/cm2)。CV、CP和电化学阻抗测试表明, Zn-Ni 氢氧化物纳米片在2 mol/L KOH电解液中充放电电流密度1 A/g时, 比电容为746.2 F/g(面积电容为3.18 F/cm2); 3000次充放电循环后, 仍保持70.9%的初始比电容。  相似文献   

9.
通过一步水热法制备组氨酸功能化碳点/石墨烯气凝胶(His-CDs/GA)。该材料具有独特的三维多孔结构、丰富的含氮和含氧官能团, 有利于电解液离子的快速扩散和提供更多的活性位点。当GO与His-CDs的质量比为2 : 1时, His-CDs/GA-2在1 A·g -1电流密度下比电容达到304 F·g - 1, 比GA(172 F·g -1)提高了76.7%; 当电流密度从1 A·g -1增加到50 A·g -1, 其比电容保持率为71.4%; 在电流密度10 A·g -1下, 循环充放电30000次后, 比电容仍保留93.5%。由His-CDs/GA组装的对称超级电容器展现出高能量密度(在功率密度为250 W/kg时, 能量密度达到10.14 Wh/kg)和良好的循环性能(在5 A·g -1下循环充放电20000次后, 比电容保持率为88.4%)。结果表明, His-CDs/GA是一种应用前景广阔的超级电容器电极材料。  相似文献   

10.
11.
热膨胀制备含氧官能团化的石墨烯及其电化学电容性能   总被引:1,自引:1,他引:0  
在空气气氛、150℃的条件下直接热处理氧化石墨获得含氧官能团化的石墨烯。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、场发射扫描电镜(FESEM)和透射电镜(TEM)对其结构和形貌进行表征。利用循环伏安(CV)、恒流充放电技术对其电化学性能进行测试。结果表明,所制备的含氧官能团化的石墨烯表现出优良的电容性能,其单电极比电容值高达275F/g,且具有良好的倍率特性和循环性能。  相似文献   

12.
石墨烯具有优异的物理、化学和力学性能,成为近年来的研究热点。尤其是其良好的导电性能和大的比表面积,使其在电化学领域中有着巨大的应用前景。综述了石墨烯的主要制备方法,重点介绍了石墨烯及其复合材料在超级电容器中的主要制备方法和应用研究,并对其未来的应用前景进行了展望。  相似文献   

13.
石墨烯具有优异的物理、化学和力学性能,成为近年来的研究热点。尤其是其良好的导电性能和大的比表面积,使其在电化学领域中有着巨大的应用前景。综述了石墨烯的主要制备方法,重点介绍了石墨烯及其复合材料在超级电容器中的主要制备方法和应用研究,并对其未来的应用前景进行了展望。  相似文献   

14.
当今社会的发展越来越注重材料对环境的影响,作为新兴的储能元件,超级电容器的发展受到了人们的广泛重视.水凝胶聚合物电解质以其易加工、低污染、防泄漏的特点逐渐成为研究的热点.针对水凝胶聚合物电解质的组成、结构和性能方面的差异,综述了近年来基于聚氧乙烯、聚丙烯酸钾、聚乙烯醇等用于超级电容器聚合物电解质的研究进展.  相似文献   

15.
超级电容器用石墨烯的制备与性能研究   总被引:1,自引:0,他引:1  
在高浓度硫酸铵溶液中还原制备了石墨烯,对石墨烯的结构与形貌以及电化学性能进行表征。以硫酸铵作为液相中还原石墨烯的添加剂,在还原时能够有效防止还原石墨烯结块,保持良好的片状结构。还原石墨烯的比表面积达到了615m2/g,内部孔径分布在2.2nm到20nm的范围内,主要集中在2.5nm左右。片状多孔石墨烯最大比电容达到了191F/g,2000次充放电测试之后,比电容依然能保持在首次循环的95%以上。  相似文献   

16.
以3-丙烯酰胺基苯硼酸(AAPBA)和丙烯酰胺(AM)为原料,过硫酸铵(APS)为引发剂,制备得到机械强度高的水凝胶电解质P(AAPBA-co-AM),探究了其力学性能以及组装成超级电容器后的电化学性能。结果表明:聚3-丙烯酰胺基苯硼酸和聚丙烯酰胺链之间多重氢键的协同作用,使得水凝胶具有良好的力学强度和韧性,其断裂应力为170 kPa,断裂伸长率为5 000 %。在1 A/g电流密度下,比电容达到116 F/g,经过2 000次循环后的电容保持率为74%。超级电容器经多次弯曲、折叠,其电化学性能基本保持不变,展现良好的柔性以及电化学稳定性。  相似文献   

17.
可承受大而复杂变形的能量存储设备的开发对于新兴可穿戴电子设备至关重要。目前,由导电聚合物制成的水凝胶在加工过程中实现了高电导率和多功能性的融合。利用简单的两步共聚方法成功构建了一种具有丰富微孔结构的水凝胶超级电容器:聚乙烯醇(PVA)和聚丙烯酰胺(PAM)形成双交联网络水凝胶,赋予刚性聚苯胺柔性,此外,聚丙烯酰胺提高了聚苯胺基水凝胶的机械强度,使得聚苯胺基(NPP)水凝胶具有良好的力学和电化学性能,在1 A·g-1其抗拉强度和比电容分别为0.3 MPa与269.12 F·g-1。聚苯胺(PANI)的添加减小了聚乙烯醇和聚丙烯酰胺双交联网络水凝胶(PP)电极的内阻,其修饰后的电阻值为39.184Ω,这使得NPP水凝胶实现了较高的电子传输能力。这种水凝胶的灵活开发集成为能源系统提供了一种替代策略,适合于超级电容器等多种应用。  相似文献   

18.
石墨烯独特的结构使其具有优异的电、光、热、强度等物理性质,是"后硅时代"的新潜力材料,因具有巨大的应用前景而成为研究的热点。首先对近10多年来国内外石墨烯的研究现状进行了简要分析,然后详细介绍了石墨烯的主要制备方法、原理、各自的特征及其应用前景,重点综述了石墨烯在超级电容器电极材料中的应用研究,最后就目前石墨烯及其在超级电容器中的应用研究的关键问题提出了个人看法和一些建议。  相似文献   

19.
以氧化石墨为前驱体,氢卤酸为诱导还原剂,采用化学还原法在温和条件下制备石墨烯气凝胶组装体。利用扫描电镜、X射线衍射、拉曼光谱、X射线光电子能谱及热重等分析手段对石墨烯气凝胶组装体的结构及性质进行表征,以研究氢卤酸的种类及浓度对石墨烯气凝胶的形成、结构及性质的影响。结果表明:相比于HBr和HCl,利用H+与I-的协同作用,HI能够有效的诱导石墨烯气凝胶组装体形成。相对于氧化石墨,所制备的石墨烯气凝胶的热稳定性和导电能力均得到了显著的提高。将石墨烯气凝胶作为超级电容器电极材料,表现出优异的电化学性能。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号