首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermosensitive N‐isopropylacrylamide (NIPAAm)‐co‐(N‐propylacrylamide (NPAAm)‐co‐vinyl pyrrolidone (VP) terpolymers (PNINAVP) were synthesized by conventional free‐radical polymerization. The thermoresponsive behaviour of their solutions was investigated by turbidimetry and dynamic contact angle (DCA) measurements. The sol‐gel transition of the copolymer solutions occurred reversibly within 30 s, in response to the change of temperature. In vitro embolic model experiments indicated that a 5 wt% solution of 16:16:1 PNINAVP had a satisfactory embolization effect. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
In this study, frontal photopolymerization was applied to the fabrication of thermosensitive poly(N‐isopropylacrylamide) (PNIPAm) hydrogels. The influence of experimental conditions and reactant components on the feature of the polymerization front was investigated. The morphology of the samples indicated the successful preparation of PNIPAm hydrogels. The mechanical properties and thermal stability of the obtained hydrogels are discussed. The results indicated that the performance of the hydrogels is related to their microstructure and the type of crosslinkers. The swelling behavior and drug delivery ability were determined under different temperature conditions. The hydrogels exhibit a classical thermoresponsive behavior, which was also demonstrated by the DSC results. Therefore, frontal photopolymerization can be an alternative method for the preparation of PNIPAm hydrogels under mild conditions. © 2019 Society of Chemical Industry  相似文献   

3.
The thermosensitive properties of the hydrogel poly(N‐isopropylacrylamide) (pNIPAAm) together with the good mechanical properties of lyocell fibres make a combination of the two to be thought of as a smart textile. In the present study the optimal values of various parameters that control the grafting process of pNIPAAm onto lyocell fibres were determined considering the influence of the interaction between them. The copolymerization of pNIPAAm hydrogel onto lyocell fibres was performed in aqueous acidic medium using cerium(IV) as initiator. An experimental design was planned in order to study the effect of the interactions between some variables that affect the kinetics of the graft copolymerization: the cerium(IV) initiator concentration, the N‐isopropylacrylamide (NIPAAm) monomer concentration and the liquor fibre‐to‐bath ratio. The results show that the interaction between the concentrations of NIPAAm and the initiator significantly affects the degree of grafting (DG), the optimum values being 1250 and 12.25 mmol L?1, respectively. In contrast, the liquor ratio parameter shows no significant interaction with the other two variables studied, meaning that it acts independently but showing a proportional relationship with respect to the DG obtained. In addition, the presence of pNIPAAm in the copolymer obtained was confirmed by Fourier transform infrared spectral analysis. Moreover, the water sorption capacity, depending on the temperature, of the lyocell/pNIPAAm copolymer was studied, with an increase being observed when the DG is higher than 60% and also increasing with the temperature.© 2012 Society of Chemical Industry  相似文献   

4.
Thermosensitive copolymers of N‐isopropylacrylamide (NIPA) and N‐acryloxysuccinimide (NASI) were obtained by solution polymerization using azobisisobutyronitrile as the initiator in a tetrahydrofuran–toluene mixture at 65 °C. A boronic acid‐carrying ligand, m‐aminophenylboronic acid (APBA) was covalently attached to the thermosensitive copolymer via the reaction between amino and succinimide groups. APBA‐coupled thermosensitive copolymer exhibited both temperature and pH sensitivity. Thermally reversible phase transitions were observed both in the acidic and alkaline pH region for the APBA‐modified copolymers obtained with different NASI feed concentrations. In our study, ribonucleic acid (RNA) was selected as a biomolecule having reactive groups which could potentially interact with the boronic acid functionality. The response of boronic acid‐carrying thermosensitive copolymer against RNA was investigated in aqueous media in the pH range 4–9. In the acidic pH region, an increase was observed in the lower critical solution temperature (LCST) of the APBA‐coupled thermosensitive copolymer with increasing RNA concentration. However, LCST decreased with increasing RNA concentration at both neutral and alkaline pH values. The LCST of the APBA‐attached copolymer varied linearly with the RNA concentration at pH of 3, 4 and 7. © 2003 Society of Chemical Industry  相似文献   

5.
New boron‐containing stimuli‐responsive (pH‐ and temperature‐sensitive) copolymers were synthesized and characterized. Structure and composition of copolymers were determined by FTIR and 1H‐NMR spectroscopy, and elemental analysis and titration (N and B contents for NIPA and VPBA unit, respectively). By DSC and XRD measurements, it is established that the synthesized copolymers have a semicrystalline structure due to formation of intra‐ and/or intermolecular H‐bonded supramolecular architecture. The copolymer composition–structure–property relationship indicates semicrystalline structure of copolymers with different compositions, degrees of crystallinity, and thermal and stimuli‐responsive behaviors depends on the content of boron‐containing monomer linkage. Results of DSC, DTA, and TGA analyses indicated that copolymers have Tg and Tm and high thermal stability. These water‐soluble and temperature‐ and pH‐sensitive amphiphilic copolymers can be used as polymeric carries for delivery of biological entities for diverse biomedical use, including boron neutron capture therapy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 573–582, 2005  相似文献   

6.
BACKGROUND: In situ gelling polymers, like poly(N‐isopropylacrylamide) (poly(NIPAAm)), have many potential medical applications due to their biocompatibility and thermosensitivity. RESULTS: Radio‐opaque thermosensitive poly(NIPAAm) grafted with 10.7 wt% 2,2′‐(ethylenedioxy)bis(ethylamine)‐2,3,5‐triiodobenzamide was successfully synthesized and characterized. The conjugated polymer showed good visibility with X‐ray fluoroscopy. The polymer had a lower critical solution temperature of 30 °C after conjugation with triiodobenzamide as determined by cloud point determination and a transition peak temperature of 33.3 ± 0.57 °C as determined by differential scanning calorimetry. CONCLUSION: The polymer synthesized was highly visible under X‐rays, based upon the percentage incorporation of triiodobenzamide. After conjugation of the NIPAAm to the triiodobenzamide through a bis(ethylamine) linkage, the resultant polymer retained lower critical solution temperature characteristics in a temperature region that makes it physiologically useful. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
Amphiphilic random copolymers, poly(R-HPMA-co-S-PAM) and poly(HPMA-co-S-PAM), were prepared by radical copolymerization of N-methacryloyl-(S)-phenylalanine methyl ester (S-PAM) and N-[(R)-2-hydroxypropyl]methacrylamide (R-HPMA) or N-(2-hydroxypropyl)methacrylamide (HPMA) with various molar ratios of R-HPMA (or HPMA) (m) to S-PAM (n). Either aqueous solution of poly(R-HPMA-co-S-PAM) with the molar ratio of m : n = 0.81 : 0.19 or poly(HPMA-co-S-PAM) with the molar ratio of m : n = 0.79 : 0.21 exhibited the lower critical solution temperature (LCST) at 16°C. The LCST in the presence of (S)-(−)-phenylalanine (S-Phe) shifted from 16 to 20°C and 18°C for poly(R-HPMA-co-S-PAM) and poly(HPMA-co-S-PAM), respectively, whereas the LCST did not shift in the presence of (R)-(+)-phenylalanine (R-Phe). Thermosensitive Gel(R-HPMA-co-S-PAM) and Gel(HPMA-co-S-PAM) were also prepared from radical copolymerization of S-PAM and R-HPMA or HPMA in the presence of N,N′-ethylenebisacrylamide (EBAAm) as a crosslinker. When the gels shrunk at 40°C, the release of dansyl-(R)-phenylalanine (Dans-R-Phe) from the gel in which loaded Dans-R-Phe occurred was more easily done than that of Dans-S-Phe from the gel that loaded Dans-S-Phe. Thus, these thermosensitive copolymers and gels were found to exhibit chiral recognition for phenylalanine derivatives. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 228–236, 2001  相似文献   

8.
谭佩毅 《化工时刊》2003,17(7):16-19
综述了近几年来温敏水凝胶的研究进展,并对温敏凝胶的合成方法、应用研究和发展前景进行了探讨。  相似文献   

9.
Hydrophilic thermosensitive copolymer beads having phosphinic acid groups were prepared by suspension copolymerization of acryloyloxypropyl n‐octylphosphinic acid (APPO), N‐isopropyl acrylamide (NIPAAm), and tetraethyleneglycol dimethacrylate (4G). The thermosensitivity and the adsorption ability of the copolymer beads for metal ions beads were studied. The APPO‐NIPAAm‐4G copolymer beads were obtained in a good yield by suspension copolymerization of monomers (APPO, NIPAAm, and 4G) dissolved in chloroform, in a saturated Na2SO4 aqueous solution in the presence of surfactant and MgCO3. The APPO‐NIPAAm‐4G copolymer beads had higher adsorption ability for lanthanide metal ions (Eu3+, Sm3+, Nd3+, or La3+) than for main transition metal ions (Cu2+, Ni2+, or Co2+). Furthermore, it was also found that the APPO‐NIPAAm‐4G copolymer beads had selective adsorption ability between lanthanide metal ions, and the order of adsorption ability for lanthanide metal ions was as follows: Eu3+ > Sm3+ > Nd3+ > La3+. The selective adsorption for these metal ions from their mixed solutions was performed by both a batch method and a column method. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 449–460, 2006  相似文献   

10.
Crosslinked poly(acryloylmorpholine) and its copolymers poly(acryloyl morpholine‐co‐acrylic acid) and poly(acryloylmorpholine‐co‐2‐acrylamide‐2‐methyl‐1‐propane sulfonic acid) were synthesized by radical polymerization. The resins were completely insoluble in water and were characterized with Fourier transform infrared spectroscopy and thermal analysis. The metal ions Ag(I), Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), Al(III), and Cr(III) were investigated under competitive and noncompetitive conditions by a batch equilibrium procedure. The resin‐metal‐ion equilibrium was achieved before 5 min. The recovery of the resin was investigated at 20°C with different concentrations of HNO3 and HClO4. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3266–3274, 2006  相似文献   

11.
The use of thermosensitive polymers in an aqueous two-phase system was studied. Poly(N-isopropylacrylamide) (PNIPAAm) and poly(N-vinylisobutyramide) (PNVIBA) were used as thermosensitive polymers. Both polymers could form aqueous two-phase with dextran, respectively. The phase diagrams of each system were successfully obtained. Using myoglobin as a model protein, a preliminary separation study was performed. The separation ability of both polymers was higher than that from the poly(ethylene glycol)-dextran system. Protein separation ability appeared to be related to the hydrophilic/hydrophobic balance of the polymers. Both PNVIBA and PNIPAAm rich phases maintained their thermosensitivity after two-phase formation. PNVIBA and PNIPAAm are useful as polymers for a functional aqueous two-phase system. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2545–2548, 1999  相似文献   

12.
A kind of temperature‐sensitive water‐soluble polymers P(NIPAM‐HEMA‐AM) of N‐isopropylacrylamide (NIPAM), hydroxyethyl methacrylate (HEMA) and acrylamide (AM) were synthesized by free radical aqueous solution copolymerization. The polymers were characterized by Fourier transform infrared spectrum (FTIR) method. Solution properties, such as the influences of monomer ratios and additives on the low critical soluble temperature (LCST) of the polymer solutions as well as the viscosity‐temperature properties were studied. The results show that the polymer concentrations have no significant influence on the LCST of polymer solutions. The incorporation of HEMA units leads to a lower LCST, while AM units to a higher LCST. The additions of small molecules such as salt and surfactant also have significant effect on the LCST, the addition of NaCl decreases the LCST, while the addition of sodium dodecylbenzenesulfonate (SDBS) increases the LCST. The apparent viscosity of polymer solutions depends on temperature. The 1.5 wt % aqueous solutions of P(NIPAM‐HEMA‐AM) exhibits good thermo‐thickening behavior over 55°C, whereas the 0.8 wt % aqueous solutions do not show this behavior during the heating process. The aqueous solutions of P(NIPAM‐HEMA‐AM) are viscoelastic fluids, and the viscoelasticities mainly depend on temperature. Both the storage modulus (G') and loss modulus (G'') of 1.5 wt % polymer solutions increase with temperature. Over 55°C, G' exceeds G'', and the polymer solutions are elasticity‐dominated. In contrast, below 55°C, G'' is larger than G', and the polymer solutions are viscosity‐dominated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
Poly[N‐isopropylacrylamide‐co‐[2‐(methylthio)ethyl methacrylate]], poly(NIPA‐co‐MTEMA) gels were prepared by free radical polymerization in aqueous solution. The homogeneous and heterogeneous gels were prepared by using 10 mM MTEMA in 5.0%(v/v) ethanol at 10°C and 30 mM MTEMA in 20%(v/v) ethanol at 50°C, in 1.0 and 1.5M NIPA solution, respectively. Homogeneous and heterogeneous gels had swelling ratios at 540 ± 28% and 551 ± 37%, respectively. The extraction of Au(III) ion was studied in batch method. The optimum pHs for the extraction of Au(III) by homogeneous and heterogeneous gels were 1–3 and 1–5, respectively. The suitable extraction time was 3 h at 50°C when using a rod‐shaped copolymer (0.7 cm diameter and 1 cm length). The adsorption behavior obeyed the Langmuir and Freundlich isotherms. The maximum sorption capacities of Au(III) onto homogeneous and heterogeneous gels were 62.8 and 322 μmol/g, respectively. The desorption equilibrium was reached within 2–3 h at 10°C by 0.1M thiourea in 5%(v/v) HCl. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
New graft copolymers were synthesized by grafting N-vinylcaprolactam onto dextran. Their composition and structure were investigated by elemental analyses, infrared spectra and thermogravimetric analyses. By optical transmittance measurements, it was found that the aqueous solutions of these graft copolymers showed a temperature-dependent transmittance change due to the introduction of thermosensitive poly(N-vinylcaprolactam) graft chains. Moreover, the lower critical solution temperature (LCST) of the graft copolymer in aqueous solution was dependent on its grafting extent and concentration. The LCST value was found to increase with the increase of the grafting extent and decrease with the increase of the copolymer concentration. With these stimuli-response properties, such polysaccharide derivative may hold potential applications in biomedicine and biotechnology. Translated from Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45(1): 50–52 [译自: 中山大学学报 (自然科学版)]  相似文献   

15.
A series of thermosensitive hydrogels were prepared from the various molar ratios of N‐isopropylacrylamide, 1‐vinyl‐3‐(3‐sulfopropyl) imidazolium betaine (VSIB), and N,N′‐methylene‐bis‐acrylamide. The influence of the amount of VSIB in the copolymeric gels on the swelling behaviors in water, in various saline solutions, and at various temperatures was investigated. The results indicated that the higher the VSIB content in the hydrogel system, the higher the swelling ratio and the gel transition temperature. In the saline solution the results showed that when the concentration of salt is higher than the minimum salt concentration (MSC) of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. In addition, only the sample containing 12 mol % VSIB (V4) exhibited an antipolyelectrolyte's swelling behavior when the concentration of salt was higher than the MSC of poly(VSIB). This means that the swelling ratio of the hydrogel can be improved with a higher concentration salt solution. In addition, the anion effects were larger than the cation effects in the presence of a common anion (Cl) with different cations and a common cation (K+) with different anions for the hydrogel. Finally, the more VSIB in the hydrogel, the higher the diffusion coefficient in dynamic swelling. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 14–23, 2000  相似文献   

16.
The luminescent copolymer 2‐phenyl‐5‐[3′‐(methacrylamido)phenyl]‐1,3,4‐oxadiazole and vinylcarbazole (PMAPO–VCZ), combining hole‐facilitating moiety, carbazole ring, and electron‐facilitating moiety, 1,3,4‐oxadiazole, as side groups, was synthesized by a radical polymerization of the olefinic monomer PMAPO and VCZ. For comparison, the homopolymer P‐PMAPO was also synthesized by similar procedures. The solubility, thermal, and optical properties of the copolymers were investigated. The synthesized copolymer was soluble in common organic solvents but the homopolymer of PMAPO was dissolved only by hot THF. Thermogravimetric analysis and differential scanning calorimetry measurements showed that the copolymer and homopolymer exhibit good thermal stability up to 360 and 340°C with glass‐transition temperatures higher than 105 and 65°C, respectively. The photoluminescence properties were investigated. The results showed that the copolymer emits blue and blue‐green light and the emission spectra of monomer and polymers exhibit obvious solvent effect. With the increase of polarity of solvents, the fluorescence spectra distinctly change, appearing with a red shift at room temperature. The concentration‐dependent emission spectra change significantly with the increase of concentration. In addition, when N,N‐dimethylaniline (DMA) was gradually added to the solution of copolymers, the emission intensity of fluorescence was dramatically increased. However, when the concentration of DMA was increased beyond a certain level, the emission intensity of fluorescence gradually decreased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2777–2783, 2004  相似文献   

17.
A new glycomonomer, 3‐acrylamido‐3‐deoxy‐1,2:5,6‐di‐O‐isopropylidene‐α‐D ‐glucofuranose, was synthesized from D ‐glucose. This monomer was homopolymerized and copolymerized with N‐isopropylacrylamide in different compositions by free‐radical polymerization. The composition of the copolymer was determined with 1H‐NMR spectroscopy. On acid hydrolysis, water‐soluble deprotected copolymers were obtained. The protected and deprotected copolymers showed a sharp cloud‐point temperature. A linear correlation was obtained between the lower critical solution temperatures and the concentration of glycomonomer in the copolymers © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
A series of novel copolymer superabsorbents based on monomer acrylamide (AM), potassium methacrylate (KMA), and 2‐hydroxyethyl methacrylate (HEMA) were prepared by copolymerization using ammonium persulfate (APS) as an initiator and N,N‐methylenebisacrylamide (MBA) as a crosslinking agent. The synthetic variables (the monomer concentration, crosslinker concentration, and initiator concentration) were also studied. The experimental results of superabsorbent polymers (SAPs) show a better absorbency in both water and NaCl solutions. The copolymers were characterized by IR spectroscopy. The water retention in the soil was enhanced using the above superabsorbents. The use of SAPs for the growth of groundnut plants was also investigated. SAPs can be considered for water‐managing materials for agriculture and horticulture purposes in desert and drought‐prone areas. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1795–1801, 2002  相似文献   

19.
The adsorption and desorption behavior of protein human serum albumin (HSA) on magnetic polymer particles covered by thermosensitive polymers was investigated. The results showed that adsorption was dependent mainly on the properties of the particle surface. By increasing the temperature, particles deswelled and were susceptible to absorb larger amounts of proteins, which could be desorbed at lower temperature. The extent of adsorption was found to depend on the pH value, protein concentration, and incubation time. At higher pH, a smaller amount of proteins could be absorbed because of the electrostatic repulsive force between the protein and the surface particles. Increasing incubation time or initial protein concentration was favorable to the adsorption of proteins. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2915–2920, 2000  相似文献   

20.
A Fourier transform infrared (FTIR) spectroscopy technique was developed to investigate the effects of reaction temperature and reactant composition on the isothermal curing kinetics of commercial vinyl nester resins comprised of vinyl–ester monomer (dimethacrylate of diglycidyl ether of bisphenol A DGEBA) and styrene. This technique enables a more complete evaluation of the bulk copolymerization reaction of vinyl–ester styrene systems by monitoring the depletion of vinyl–ester and styrene double bonds independently. The results indicate that the rate of fractional conversion of styrene double bonds is initially less than that of vinyl–ester vinyl groups. However, styrene monomer continues to react after conversion of vinyl–ester double bonds has ceased. In addition, the overall extent of conversion was found to increase with increasing isothermal cure temperature, and it was observed that higher styrene concentration enhances final conversion of vinyl–ester double bonds and not styrene double bonds. Increasing styrene monomer concentration also resulted in lowering the apparent activation energy for the reaction of vinyl groups from both monomers as characterized by an empirical autocatalytic model used to fit the conversion results for styrene and vinyl–ester double bonds independently. The results of this work demonstrate that reaction temperature and resin composition significantly affect the cure behavior of vinyl–ester resins and provide insight into the development of the resulting network structure. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1572–1582, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号