首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patrícia S. Calvão 《Polymer》2005,46(8):2610-2620
Here, the effect of concentration on the morphology and dynamic behavior of polymethylmethacrylate/polystyrene (PMMA/PS), for PS with two different molecular weight, and polymethylmethacrylate/polypropylene (PMMA/PP) blends was studied. The blends concentrations ranged from 5% to 30% of the dispersed phase (PS or PP). The dynamic data were analyzed to study the possibility of inferring the interfacial tension between the components of the blend from their rheological behavior using Palierne [Palierne JF. Rheol Acta 1990;29:204-14] [1] and Bousmina [Bousmina M. Acta 1999;38:73-83] [2] emulsion models. The relaxation spectrum of the blends was also studied. The dynamic behavior of 85/15 PS/PMMA blend were studied as a function of temperature. It was possible to fit both Palierne and Bousmina's emulsion models to the dynamic data of PMMA/PS blends, to obtain the interfacial tension of the blend. This was not the case for PMMA/PP. The relaxation spectrum of both blends was used to obtain the interfacial tension between the components of the blends. The values of interfacial tension calculated were shown to decrease when the concentration of the blends increased. It was shown using morphological analysis that this phenomenon can be attributed to the coalescence of the dispersed phase during dynamic measurements that occurs for large dispersed phase concentration. When the ‘coalesced’ morphology is taken into account in the calculations the interfacial tension inferred from rheological measurement did not depend on the concentration of the blend used. The values of interfacial tension found analyzing the dynamic behavior of one of the PMMA/PS blend were shown to decrease with temperature.  相似文献   

2.
An in situ Neumann triangle-focused ion beam-atomic force microscopy (NT-FIB-AFM) method has been used to measure modified PS/HDPE interfacial tensions in ternary PS/PP/HDPE blends prepared by melt mixing and demonstrating partial wetting. The ternary blend was modified with SEB, SB and SEBS copolymers. Results related to the position of the PS droplet at the interface show that a symmetrical diblock copolymer is somewhat more efficient in decreasing the interfacial tension compared to an asymmetrical one of similar molecular weight, while the SEBS triblock copolymer appears to have no effect at all. Using the NT-FIB-AFM method, the lowest modified PS/HDPE interfacial tension is 3.0 ± 0.4 mN/m for the symmetric diblock, compared to 4.2 ± 0.6 mN/m (N = 34) for the unmodified interface. This corresponds to an apparent areal density in SEB copolymer equal to 0.16 ± 0.03 molecules/nm2, which is near reported saturation values. By varying the concentration of the copolymer, an emulsification curve reporting the value of the PS/HDPE modified interfacial tension as a function of the apparent areal density of the copolymer at the PS/HDPE interface has been obtained. The interfacial tension values obtained by the NT-FIB-AFM approach are significantly higher than the 0.5 ± 0.2 mN/m (N = 3) result obtained by using the classical breaking thread method with the same materials. This discrepancy does not appear to be due to a poor migration of the copolymer to the PS/HDPE interface, but could instead be attributed to the interfacial elasticity of the compatibilized interface, a phenomena that has not been accounted for so far in experimental studies on the morphology of compatibilized multicomponent polymer blends.  相似文献   

3.
Polycaprolactone (PCL) is a biodegradable polyester that is widely used in blends with synthetic and natural polymers for various applications. PCL is blended with biopolymers such as starch to improve its wet mechanical properties without impairing the biodegradability and other useful properties of starch. In spite of its importance, little is known about the interfacial tension of PCL blends. Indirect estimates of the room‐temperature interfacial tension of PCL blends using wettability methods have been reported. However, direct measurements of the interfacial tension of PCL blends have not been achieved until now, mainly because of the unsuitability of existing equilibrium methods for measuring the interfacial tension of high viscosity blends. We have measured the interfacial tension of PCL/PS blends using the imbedded fiber retraction (IFR) method. The IFR is a dynamic method that allows for the measurement of interfacial tension of high viscosity polymer blends in a relatively short period of time. The interfacial tension of PCL/PS blends was measured from 160 to 200°C. In this temperature range, the interfacial tension of PCL/PS blends is independent of temperature and has a value of 7.6 ± 1.8 dyn/cm. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3145–3151, 2002; DOI 10.1002/app.10178  相似文献   

4.
借助于动态流变学中小振幅振荡剪切法测得聚丙烯(PP)与两种不同牌号(乙烯/乙酸乙烯酯)共聚物(E/VAC)共混物的动态模量,通过扫描电子显微镜对共混物中分散相粒径及分布进行表征,将实际测得的共混物动态模量与用Palierne乳液模型计算得到的共混物动态模量进行数据拟合,得到PP与两种不同牌号E/VAC共混物的界面张力分别为0.44 mN/m和1.39 mN/m。  相似文献   

5.
In this paper the influence of temperature and composition on the dynamic behavior and morphology of polypropylene (PP)/high-density polyethylene (HDPE) blends were studied. The blend composition ranged from 5 to 30 wt% of dispersed phase (HDPE) and the temperatures ranged from 180 to 220 °C. The interfacial tension between PP and HDPE at temperatures of 180, 200 and 220 °C was obtained from fitting Palierne's emulsion model [1] to the experimental data of PP/HDPE blends with different compositions and from the weighted relaxation spectra of PP/HDPE blends with different compositions, following Gramespacher and Meissner [2] analysis. The interfacial tension between PP and HDPE as inferred from the rheological measurements was shown to depend on PP/HDPE blend composition. However, the results indicated that there is a range of PP/HDPE blend composition for which interfacial tension between PP and HDPE is constant. Considering these values, it was shown that interfacial tension between PP and HDPE decreases linearly with increasing temperature.  相似文献   

6.
Rheological properties of the polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends were studied by Advanced Rheometric Expansion System (ARES). Storage modulus and loss modulus of the PS and PMMA blends were measured, and the interfacial tension of the PS and PMMA blends were obtained with various emulsion models by using the storage modulus and loss modulus of the blends. The value of interfacial tension estimated from the Palierne emulsion model was found to be 2.0 mN/m. Also, the interfacial tension between PS and PMMA was calculated by a theoretical model. The values of interfacial tension of the PS and PMMA blends obtained by the experiment and theoretical model were found to be in good agreement.  相似文献   

7.
Adhesion properties between branched polyethylene (PE) and isotactic polypropylene (PP) were studied by a peel test and scanning electron microscopy. In this study, two types of branched PEs were used; one is a linear low density polyethylene (LLDPE) and the other is a high pressure low density polyethylene (LDPE). The adhesive strength of the LLDPE/PP is much higher than that of LDPE/PP. Furthermore, the formation of PE influxes between PP spherulites has a small effect on the adhesion. The dynamic viscoelastic measurements for the binary blends composed of branched PE and PP were also carried out to estimate the interfacial tension by using a rheological emulsion model proposed by Palierne. The interfacial tension is 1.0 mN for LLDPE/PP and 2.1 mN for LDPE/PP, suggesting that the interfacial thickness of LLDPE/PP is about twice that of LDPE/PP. The adhesive strength between branched PE and PP will be determined by the interfacial thickness, which represents the entanglements between two polymers. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 457–463, 1998  相似文献   

8.
采用断裂纤维丝线法和变形液滴回缩法两种方法相结合,在线观察聚酰胺6(PA6)液滴在聚丙烯(PP)中的回缩过程,研究不同相容剂对该体系界面张力的影响。结果表明,PA6液滴在剪切场下发生变形,然后在界面张力的作用下逐渐回缩成球形,并测得该体系的界面张力为7.16 mN/m。添加相容剂可以显著降低体系的界面张力。不同相容剂[聚丙烯接枝马来酸酐(PP-g-MA)、聚丙烯接枝丙烯酸(PP-g-AA)、氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS)]对体系界面张力影响不同,满足以下关系:γ_(PP/PA6)>γ_(PP/SEBS/PA6)>γ_(PP/PP-g-AA/PA6)>γ_(PP/PP-g-MAH/PA6)。  相似文献   

9.
Breakup of fibers of a thermotropic liquid crystalline polymer (TLCP) above the melting temperature in various ordinary polymers has been studied by capillary instability experiments on single TLCP fibers and by annealing experiments on extruded TLCP/thermoplast blends. The TLCP was an aromatic copolyester, Vectra A900, the matrix polymers were PP, PS, PC, PEL PES, and PEBT. Both types of experiments show that the fiber/matrix morphology is, in general, highly unstable in the molten state. The TLCP fibers break up into droplets by a combination of Rayleigh distortions, end-pinching and retraction, depending on the system and shape of the fiber. Fibers of a thickness of ~1 μm can break up in a few seconds. Breakup times of fibrous blends and individual fibers are in agreement provided size effects are accounted for. Rayleigh distortions develop exponentially in time up to relative distortions of 0.5 to 0.6. Breakup occurs within a range of wave numbers rather than at one distinct dominant wave number, which is shown to be the consequence of relatively large initial distortions. Apparent values for the interfacial tensions calculated with Tomotika's theory turned out to be of the correct order of magnitude, ranging from 7 mN/m for Vectra/PES to 24 mN/m for Vectra/PP and to yield correct values of the interfacial tensions of PP/PS, PP/PC, and PS/PC using Antonow's rule.  相似文献   

10.
Thermoplastic vulcanizates (TPVs) were prepared from polypropylene (PP) and reclaimed ground tire rubber crumbs. Three types of interfacial strengthening agents—degraded PP, hydrosilylated PP, and hydrosilylated PP grafted onto styrene–butadiene rubber—were prepared in melt via a stepwise series of reactions and employed to generate various degrees of interfacial adhesion in the aforementioned blends. The incorporation of the interfacial agents resulted in improvements in the mechanical properties of these TPVs, and the rubber particle size remained constant. The PP chain length and the functional groups present in the interfacial agents affected the magnitude of the improvement in the mechanical properties. The interfacial agents were primarily present on the surface of the rubber particles in the blends, as shown by energy‐dispersive X‐ray spectra. These interfacial agents in the PP/rubber crumb blends led to a unique preyield kink in their stress–strain curves, a plateau, or a sharp turning point in the region of approximately 3% elongation and approximately 4‐MPa stress. These kinks were interpreted similarly to the cold flow of semicrystalline polymers in tension. The addition of the interfacial modifiers decreased the shear viscosity and increased the entrance pressure drop in flow through capillary dies, and this was attributed to changes in the elongational viscosity of the blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
高芒来  孟秀霞 《精细化工》2004,21(11):861-865
从MD膜驱剂与原油界面活性组分沥青质模型油的界面张力出发,考察了作用时间、水相pH、MD膜驱剂质量浓度、盐浓度、沥青质含量、芳香度、温度等对模型油/水界面张力的影响,并根据扩散控制机理解释了动态界面张力初期过程,进一步揭示了MD膜驱油技术的机理。结果表明,沥青质模型油/MD膜驱剂溶液的界面张力先随时间增加而降低,约15min后达到平衡,达到平衡之前的过程基本上符合扩散控制过程;MD膜驱剂的加入并不能改变pH对模型油/水界面张力的影响趋势;在所考察的条件范围内,沥青质模型油/水溶液的界面张力不随MD膜驱剂质量浓度增加而改变,其值约为19 65mN/m;NaCl对界面张力的影响不明显;沥青质质量浓度从0增加到1000mg/L时,模型油/水和模型油/MD膜驱剂溶液的界面张力分别从23 4mN/m和22 0mN/m逐渐下降至20 0mN/m和18 8mN/m;温度从25℃升高到45℃时,模型油/水溶液的界面张力降低;但芳香度从0增加到100%时,其界面张力均从21 0mN/m增加至31 5mN/m。MD膜驱剂是表面非活性物质,在驱油时不存在低界面张力提高采收率的机理。  相似文献   

12.
The potential of using dispersive domains in a polymer blend as a bubble nucleating agent was investigated by exploiting its high dispersibility in a matrix polymer in the molten state and its immiscibility in the solid state. In this experiments, polypropylene (PP) was used as the nucleating agent in polystyrene (PS) and poly(methyl methacrylate) (PMMA) foams at the weight fraction of 10, 20, and 30 wt %. PP creates highly dispersed domains in PS and PMMA matrices during the extrusion processing. The high diffusivity of the physical foaming agent, i.e., CO2 in PP, and the high interfacial tension of PP with PS and PMMA could be beneficial for providing preferential bubble nucleation sites. The experimental results of the pressure quench solid‐state foaming of PS/PP and PMMA/PP blends verified that the dispersed PP could successfully increase the cell density over 106 cells/cm3 for PS/PP and 107 cells/cm3 for PMMA/PP blend and reduce the cell size to 24 μm for PS/PP and 9 μm for PMMA/PP blends foams. The higher interfacial tension between PP and the matrix polymer created a unique cell morphology where dispersed PP particles were trapped inside cells in the foam. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

14.
Interfacial tension is one of the most important parameters that govern the morphology of polymer blends and the quality of adhesion between polymers. However, few data are available on interfacial tension due to experimental difficulties. A pendant drop apparatus was used for the determination of the interfacial tension for the polymer pair polypropylene/polystyrene (PP/PS). The effects of temperature and molecular weight were evaluated. The range of temperatures used was from 178° to 250°C, and the range of molecular weights used was from 1590 to 400,000. The interfacial tension decreased linearly with increasing temperature. With only one exception, higher molecular weight systems showed weaker dependence of interfacial tension on temperature than lower molecular weight systems. Also, polydisperse systems showed a stronger dependency on temperature than the monodisperse systems. The value of the interfacial tension, which increases with molecular weight, appears to level off at molecular weights above the entanglement chain length. For the polymer pair PP/PS, the dependency of the interfacial tension on the number average molecular weight appears to follow the well-known semi-empirical (?2/3) power rule over most of the range of molecular weights. Comparable correlations were obtained with values of the power between ?1/2 and ?1.0.  相似文献   

15.
基于原子转移自由基聚合(ATRP)机理,以二甲基一氯硅烷封端的烯丙基-聚乙二醇为起始剂,甲基丙烯酸乙酯(EMA)为单体,通过控制反应温度,合成了一系列聚合度(DP_(NMR))分别为0. 74,1. 67和3. 07的新型对称性两亲含硅共聚物(PEMA-b-Si-PEG-Si-b-PEMA),并评价了该共聚物在氯仿/水界面的界面活性和吸附行为。结果表明:该类聚合物可以有效降低氯仿/水界面张力,具有最短PEMA链的聚合物可将氯仿/水界面张力从32 m N/m降低至约23 m N/m。动态界面张力分析表明:低浓度的共聚物在吸附的初始阶段符合扩散控制,且较短的PEMA链段有利于产生较快的扩散速率。平衡界面张力分析表明:随着界面浓度的增加,共聚物将表现出多种吸附状态,其吸附状态的数量以及聚合物在界面的偏摩尔面积将随着PEMA链长度的增加而增加。  相似文献   

16.
In this paper, the compatibilization of polypropylene (PP)/high-density polyethylene (HDPE) blend was studied through morphological and interfacial tension analysis. Three types of compatibilizers were tested: ethylene-propylene-diene copolymer (EPDM), ethylene-vinylacetate copolymer (EVA) and styrene-ethylene/butylene-styrene triblock copolymer (SEBS). The morphology of the blends was studied by scanning electron microscopy. The interfacial tension between the components of the blends was evaluated using small amplitude oscillatory shear analysis. Emulsion curves relating the average radius of the dispersed phase and the interfacial tension to the compatibilizer concentration added to the blend were obtained. It was shown that EPDM was more efficient as an emulsifier for PP/HDPE blend than EVA or SEBS. The relative role of interfacial tension reduction and coalescence reduction to particle size reduction was also addressed. It was observed that the role of coalescence reduction is small, mainly for PP/HDPE (90/10) blends compatibilized by EPDM, EVA or SEBS. The results indicated that the role of coalescence reduction to particle size reduction is lower for blends for which interfacial tension between its components is low at compatibilizer saturation.  相似文献   

17.
A series of novel fluorinated polypropylenes (FPP) with low surface tension were prepared by reactive extrusion of polypropylene (PP) with fluorinated methacrylate, 2,3,4,5,5,5‐hexafluoro‐2,4‐bis (trifluoromethyl) pentyl methacrylate (HFPMA), aiming at improving the barrier properties of the material for the containers of organic liquids. The surface characteristics of these polypropylene materials and the influence of HFPMA on the crystalline behavior were investigated by the X‐ray photoelectron spectroscopy (XPS) and wide‐angle X‐ray diffraction (WAXD). The surface tension of the FPPs is found to be in the range of 28.8–22.9 mN/m while varying the fluorinated monomer contents, which was lower than that of the original PP (about 30 mN/m). The barrier properties of these materials as the containers were studied by using blow‐molded bottles made of FPP and PP. The results showed that enhanced permeation resistance for acetone and xylene solvents as well as better antiultraviolet transmittance properties were achieved in FPP bottles. The acetone and xylene permeation ratio of the FPP bottles were about 1.62 and 1.28 times compared to that of PP bottles, respectively. In addition, the WAXD and DSC studies suggested that the grafting of the fluorinated methacrylate, HFPMA, onto the PP might induce the formation of β form crystals, which is rarely found in the common PP materials. The percentage of β form crystals reached 33.6%, estimated by WAXD, in the FPP with 20% (by weight) of HFPMA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
耿慧 《精细化工》2012,29(3):240-244
以二苯甲烷、系列长链脂肪酰氯(月桂酰氯、豆蔻酰氯、棕榈酰氯)和氯磺酸为主要原料,合成了3个阴离子双子表面活性剂———双直链烷基二苯甲烷双磺酸钠盐(DSDM)。通过硅胶层析法分离提纯了中间产品,并采用核磁共振氢谱对其结构进行表征,采用质谱对最终产品的结构进行了表征,证明所得产物即为目标产物。测定了DSDM的相关性能,结果表明,C12-DSDM在25℃时,CMC和γCMC分别为1.452 mmol/L和38.49 mN/m;C14-DSDM、C16-DSDM的油水界面张力均受温度和硬度的影响;C14-DSDM不受盐度的影响;C16-DSDM受盐度影响较大;C14-DSDM、C16-DSDM复配体系可达到9.44×10-3 mN/m的超低界面张力。  相似文献   

19.
In this work, the influence of temperature, molecular weight, and polydispersity of polystyrene on interfacial tension between low‐density polyethylene (LDPE) and polystyrene (PS) was evaluated using the pendant drop method. It was shown that interfacial tension between LDPE and PS decreases with increasing temperature for all LDPE–PS pairs studied. The temperature coefficient (∂γ/∂T) (where λ is interfacial tension and T is temperature) was higher for lower molecular weight and larger polydispersity of PS. The interfacial tension between LDPE and PS at a temperature of 202°C increased when the molecular weight of polystyrene was varied from 13,000 to 30,000. When the molecular weight of PS was further increased, the interfacial tension was shown to level off. The effect of polydispersity on interfacial tension between PS and LDPE, at a temperature of 202°C, was studied using PS with a constant‐number average molecular weight and varying polydispersity. The interfacial tension was shown to decrease with increasing polydispersity. However, the influence of polydispersity was lower for PS of higher molecular weight. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2423–2431, 1999  相似文献   

20.
合成了一种耐温抗盐表面活性剂,通过红外光谱分析了该表面活性剂的结构。将其与2500万分子量聚丙烯酰胺进行复配,考察了复配体系的表面、界面性能。研究结果表明:所合成的产物为目标产物;磺基甜菜碱表面活性剂的临界胶束浓度(cmc)为2.19×10^-3mol/L,临界胶束浓度下的表面张力(γcmc)为25.51mN/m;加入聚合物后临界胶束浓度变为4.09×10^-3mol/L,γcmc变为26.65mN/m;表面活性剂质量浓度在0.8—1.5g/L,可使胜利原油油水间的界面张力达到超低数量级(10^-3mN/m);聚合物的加入有利于乳状液的形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号