首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the physical properties of water‐blown rigid polyurethane (PU) foams made from VORANOL®490 (petroleum‐based polyether polyol) mixed with 0–50% high viscosity (13,000–31,000 cP at 22°C) soy‐polyols. The density of these foams decreased as the soy‐polyol percentage increased. The compressive strength decreased, decreased and then increased, or remained unchanged and then increased with increasing soy‐polyol percentage depending on the viscosity of the soy‐polyol. Foams made from high viscosity (21,000–31,000 cP) soy‐polyols exhibited similar or superior density‐compressive strength properties to the control foam made from 100% VORNAOL® 490. The thermal conductivity of foams containing soy‐polyols was slightly higher than the control foam. The maximal foaming temperatures of foams slightly decreased with increasing soy‐polyol percentage. Micrographs of foams showed that they had many cells in the shape of sphere or polyhedra. With increasing soy‐polyol percentage, the cell size decreased, and the cell number increased. Based on the analysis of isocyanate content and compressive strength of foams, it was concluded that rigid PU foams could be made by replacing 50% petroleum‐based polyol with a high viscosity soy‐polyol resulting in a 30% reduction in the isocyanate content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Both HCFC‐ and pentane‐blown rigid polyurethane foams have been prepared from polyols derived from soybean oil. The effect of formulation variables on foam properties was studied by altering the types and amounts of catalyst, surfactant, water, crosslinker, blowing agent, and isocyanate, respectively. While compressive strength of the soy foams is optimal at 2 pph of surfactant B‐8404, it increases with increasing the amount of water, glycerin, and isocyanate. It also increases linearly with foam density. These foams were found to have comparable mechanical and thermoinsulating properties to foams of petrochemical origin. A comparison in the thermal and thermo‐oxidative behaviors of soy‐ and PPO‐based foams revealed that the former is more stable toward both thermal degradation and thermal oxidation. The lack of ether linkages in the soy‐based rather than in PPO‐based polyols is thought to be the origin of improved thermal and thermo‐oxidative stabilities of soy‐based foams. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 467–473, 2000  相似文献   

3.
Water‐blown rigid polyurethane foams from soy‐based polyol were prepared and their structure–property correlations investigated. Cellulose microfibers and nanoclays were added to the formulations to investigate their effect on morphology, mechanical, and thermal properties of polyurethane foams. Physical properties of foams, including density and compressive strength, were determined. The cellular morphologies of foams were analyzed by SEM and X‐ray micro‐CT and revealed that incorporation of microfibers and nanoclays into foam altered the cellular structure of the foams. Average cell size decreased, cell size distribution narrowed and number fractions of small cells increased with the incorporation of microfibers and nanoclays into the foam, thereby altering the foam mechanical properties. The morphology and properties of nanoclay reinforced polyurethane foams were also found to be dependent on the functional groups of the organic modifiers. Results showed that the compressive strengths of rigid foams were increased by addition of cellulose microfibers or nanoclays into the foams. Thermogravimetric analysis (TGA) was used to characterize the thermal decomposition properties of the foams. The thermal decomposition behavior of all soy‐based polyurethane foams was a three‐step process and while the addition of cellulose microfibers delayed the onset of degradation, incorporation of nanoclays seemed to have no significant influence on the thermal degradation properties of the foams as compared to the foams without reinforcements. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Polyurethane foam was fabricated from polymeric diphenylmethane diisocyanate (pMDI) and soy‐based polyol. Nanoclay Cloisite 30B was incorporated into the foam systems to improve their thermal stabilities and mechanical properties. Neat polyurethane was used as a control. Soy‐based polyurethane foams with 0.5–3 parts per hundred of polyols by weight (php) of nanoclay were prepared. The distribution of nanoclay in the composites was analyzed by X‐ray diffraction (XRD), and the morphology of the composites was analyzed through scanning electron microscopy (SEM). The thermal properties were evaluated through dynamic mechanical thermal analysis (DMTA). Compression and three‐point bending tests were conducted on the composites. The densities of nanoclay soy‐based polyurethane foams were higher than that of the neat soy‐based polyurethane foam. At a loading of 0.5 php nanoclay, the compressive, flexural strength, and modulus of the soy‐based polyurethane foam were increased by 98%, 26%, 22%, and 65%, respectively, as compared to those of the neat soy‐based polyurethane foam. The storage modulus of the soy‐based polyurethane foam was improved by the incorporation of nanoclay. The glass transition temperature of the foam was increased as the nanoclay loading was increased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The modulus development of reacting polyurethane foams from modified soy oil (soy polyol) was studied. The reaction and buildup of rheological properties were monitored using vane geometry in a strain‐controlled rheometer. Normal force exerted on the vanes by the expanding foam was measured as a function of time to study the phenomenon of cell opening. The effect of foam ingredients and process parameters on the modulus development was investigated. The morphology of the cured foam was studied using scanning electron microscope (SEM). Experiments were carried out to elucidate the effect of water and addition of petroleum‐based polyol on the modulus development of the reacting foam and the morphology of the cured product. The effect of frequency and thermal history on the modulus development of the reacting foam was also studied. Ozonolysis of soybean oil was carried out to study the effect of adding OH groups on the modulus development during the foaming reaction. Four stages of modulus development, similar to those observed for synthetic polyol (voranol, Aldrich Chemicals) foams, were observed. Increase in water content led to an earlier stiffening of the polymer and a higher modulus. Addition of voranol in soy polyol reduced the liquid foam plateau and significantly reduced the reaction time. Ozonolysis of soy oil led to an earlier phase separation as compared with foams from soy polyol. The temperature at which the foaming reaction takes place dominated the rate of modulus buildup. Higher texture (urea aggregates) and an increase in the cell size were observed with an increase in water content for soy polyol foams. Addition of voranol increased the number of open cells. Polym. Eng. Sci. 44:1977–1986, 2004. © 2004 Society of Plastics Engineers.  相似文献   

6.
以大豆分离蛋白、高活性聚醚、聚合物多元醇、交联剂、发泡剂、泡沫稳定剂和混合异氰酸酯为原料,自由发泡、常温熟化制备了大豆蛋白基高回弹聚氨酯软泡。研究了大豆蛋白质(SPI)对聚氨酯泡沫物理性能、力学性能、孔结构和热性能的影响。结果表明:SPI添加量对泡沫物理和力学性能影响最大。随着SPI含量增加,泡沫的密度、尺寸稳定性提高,压陷硬度和舒适因子提高增大;回弹率下降,断裂伸长率减小,而拉伸强度先增大后减小。SPI能够提高聚氨酯的热稳定性,但最好低于150℃使用。  相似文献   

7.
Flexible plastic foams using soy protein isolate (SPI), soy protein concentrate (SPC), and defatted soy flour (DFS) were produced by interacting proteins with glycerol-propylene oxide polyether triol (polyol), surfactant, triethanolamine (crosslinking agents), tertiary amine (catalyst), and water (blowing agent). The density, compressive stress, resilience, and dimensional stability of foams with SPI, SPC, and DFS increased as the initial concentration of soy protein increased. The foam density increased with increasing weight percentage of SPI, SPC, and DFS. The resilience values of SPI containing foam increased with the increasing addition of SPI up to a maximum 30% SPI addition. An increase in SPI up to 20% caused an increase in the compressive stress (225 kPa) in comparison to control polyurethane foam (187 kPa). The control foam and foam containing 20% DFS had a similar load-deformation relationship. The foam containing 20% SPI and SPC also exhibited a similar shape, but with a higher compressive stress. The compressive stress of all foams was steeply increased after 55% strain, since the foams completely collapsed upon compression.  相似文献   

8.
The bio‐based rigid polyurethane (PU) foams were successfully prepared based on liquefied products from peanut shell with water as the blowing agent. The influence of reaction parameters on properties of rigid PU foams was investigated. Rigid PU foams showed excellent compressive strength and low shrinkage ratio, whereas their open‐cell ratio and water absorption were higher. Therefore, rigid PU foams were synthesized with petroleum ether, diethyl ether, and acetone as auxiliary blowing agents and their inner temperature, shrinkage performance, density, compressive strength, water absorption, and open‐cell ratio were determined. The results indicated that above rigid PU foams showed lower compressive strength than the original foam but their water absorption and close‐cell ratio were improved. Compared with the original foam, the highest inner temperature of rigid PU foams with petroleum ether, diethyl ether, and acetone as auxiliary blowing agents was reduced by 11, 19, and 23 °C, respectively. Typically, foams with petroleum ether as auxiliary blowing agent displayed better water absorption and swelling ratio in water and exhibited obvious improvement in close‐cell ratio. These foams were preferable for application in thermal insulation materials because of low thermal conductivity and better corrosion resistance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45582.  相似文献   

9.
用聚醚多元醇A、聚醚二醇B、聚酯多元醇PS-2915、三乙醇胺、水和其他助剂制备了喷涂管道用全水发泡聚氨酯硬泡组合聚醚,并对其反应性能、黏度进行评价,对使用该组合聚醚和多异氰酸酯PM-200制得的聚氨酯泡沫材料的性能进行研究。结果表明,在合适的原料用量时,制得的组合聚醚黏度较低,与多异氰酸酯PM-200的反应速度满足喷涂管道生产工艺要求。当喷涂制得的聚氨酯泡沫单层厚度7 mm左右,泡沫体具有较高的粘接强度、较好的韧性和较低的导热系数,密度61 kg/m^3的泡沫压缩强度达到526 kPa。制得的喷涂管道产品满足GB/T 34611—2017要求。  相似文献   

10.
Glycolysis reaction kinetics of methylene diphenyl diisocyanate‐based water‐blown polyurethane foams was examined by gel permeation chromatography. Glycolysates were reacted with butyl glycidyl ether to convert toxic aromatic amines to polyols, and their products were identified by 1H‐NMR spectroscopy. To examine the quality of recycled polyol, polyurethane foams were reprepared using the virgin and recycled polyol mixtures with varying compositions. Cell structures and sizes of reprepared foams were similar to those of original ones when the recycled polyols were mixed up to 30 wt %. Density, thermal conductivity, and flexural strength of the reprepared foams were compared with those of the original ones, and no difference was observed below the recycled polyol concentration of 30 wt %. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2646–2656, 2000  相似文献   

11.
Fifty vegetable oil‐based polyols were characterized in terms of their hydroxyl number and their potential of replacing up to 50% of the petroleum‐based polyol in waterborne rigid polyurethane foam applications was evaluated. Polyurethane foams were prepared by reacting isocyanates with polyols containing 50% of vegetable oil‐based polyols and 50% of petroleum‐based polyol and their thermal conductivity, density, and compressive strength were determined. The vegetable oil‐based polyols included epoxidized soybean oil reacted with acetol, commercial soybean oil polyols (soyoils), polyols derived from epoxidized soybean oil and diglycerides, etc. Most of the foams made with polyols containing 50% of vegetable oil‐based polyols were inferior to foams made from 100% petroleum‐based polyol. However, foams made with polyols containing 50% hydroxy soybean oil, epoxidized soybean oil reacted with acetol, and oxidized epoxidized diglyceride of soybean oil not only had superior thermal conductivity, but also better density and compressive strength properties than had foams made from 100% petroleum polyol. Although the epoxidized soybean oil did not have any hydroxyl functional group to react with isocyanate, when used in 50 : 50 blend with the petroleum‐based polyol the resulting polyurethane foams had density versus compressive properties similar to polyurethane foams made from 100% petroleum‐based polyol. The density and compressive strength of foams were affected by the hydroxyl number of polyols, but the thermal conductivity of foams was not. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
利用2种不同粒径的球形二氧化硅(SiO2)纳米粒子作为填料,制备了硬质聚氨酯(PU-R)/SiO2纳米粒子复合材料泡沫。利用扫描电子显微镜考察复合材料的形貌,通过压缩试验、尺寸稳定性测试和热导率测试表征复合材料的力学性能、尺寸稳定性和热导率。结果表明,球形SiO2纳米粒子对复合材料的泡孔结构有明显的细化作用(孔径从纯PU-R泡沫的303 μm降低到170 μm),可以有效提高复合材料的压缩性能(与纯PU-R泡沫相比,比强度和比模量分别提高了8.3 %和12.5 %),降低了其线膨胀系数,并使热导率略微下降,而对尺寸稳定性无明显影响。与粒径为400 nm的SiO2纳米粒子相比,粒径为700 nm的SiO2纳米粒子较易均匀分散,对PU-R泡沫力学性能的改善效果更为明显。  相似文献   

13.
采用异氰酸酯、聚酯多元醇、发泡剂(水)等原料通过一体发泡成型技术制备出一种新型的三明治泡沫夹心复合材料。利用热重分析、扫描电子显微镜等对不同水含量(质量分数分别为0、0.5 %和1.0 %)的硬质聚氨酯泡沫材料的泡孔直径、密度、热导率、压缩性能、三点弯曲和热力学性能等做了研究,进而确定提高硬质聚氨酯性能的最佳工艺。结果表明,随着水含量的增加,硬质聚氨酯泡沫材料泡孔直径增大,密度变小,热导率降低,保温性能提高,而压缩性能和三点弯曲却呈下降趋势;综合考虑硬质聚氨酯泡沫材料泡孔结构和良好的保温隔热及弯曲等力学性能,其最佳含水量为0.5 %。  相似文献   

14.
Liquefaction of waste paper (WP) was conducted in the presence of polyhydric alcohols to prepare biodegradable polyurethane foam. The liquefied‐WP‐based polyol had suitable characteristics such as apparent molecular weight, hydroxyl value, and viscosity for the preparation of rigid polyurethane foam and was successfully applied to produce polyurethane foam with the appropriate combinations of foaming agents. The obtained foams showed satisfactory densities and mechanical properties as good as those of foams obtained from liquefied wood‐ and starch‐based polyols. The foams had almost the same thermal stability at initial weight loss and seemed to be potentially biodegradable because they were degraded to some extent in leaf mold. There were no mutagens or carcinogens in the water extracts of the foams. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1482–1489, 2002  相似文献   

15.
A diol‐based refined, bleached, and deodorized (RBD) palm kernel oil polyol was prepared. It was found that the polyurethane foam produced only gives a good compressive strength property at a 45 kg/m3 molded density. The combination of sorbitol into the polyol system resulted in a better dimensional stability and improved thermal conductivity as well as enhanced compressive strength. These were obtained by increasing the functionality of the polyol (functionality of 4.5) through introduction of a high molecular weight and branching polyhidric compound. Direct polycondensation and transesterification methods were used for the syntheses. The hydroxyl value, TLC, and FTIR were used to study the completion of the reaction. A comparative study of the mechanical properties and morphological behavior was carried out with a diol‐based polyol. From the water‐blown molded foam (zero ODP) with a density of about 44.2 kg/m3 and a closed‐cell content of 93%, a compressive strength of 222 kPa and a dimensional stability of 0.09, 0.10, and 0.12% at the length, width, and thickness of the foam, respectively, conditioned at ?15°C for 24 h, were obtained. The thermal conductivity improved to an initial value of 0.00198 W/mK, tested at 0°C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 384–389, 2001  相似文献   

16.
To explore the potential of isocyanate usage reduction, water‐blown rigid polyurethane foams were made by replacing 0, 20, and 50% of Voranoll® 490 in the B‐side of the foam formulation by epoxidized soybean oil (ESBO) with an isocyanate index ranging from 50 to 110. The compressive strength, density, and thermal conductivity of foams were measured. The foam surface temperature was monitored before and throughout the foaming reaction as an indirect indication of the foaming temperature. Increasing ESBO replacement and/or decreasing isocyanate index decreased the foam's compressive strength. The density of the foam decreased while decreasing the isocyanate index to 60. Further decrease in isocyanate index resulted in foam shrinkage causing a sharp increase in the foam density. The thermal conductivity of foams increased while decreasing the isocyanate index and increasing the ESBO replacement. Mathematical models for predicting rigid polyurethane foam density, compressive strength, and thermal conductivity were established and validated. Similar to compressive strength, the foaming temperature decreased while decreasing the isocyanate index and increasing the ESBO replacement. Because of the lower reactivity of ESBO with isocyanate, the rate of foaming temperature decrease with decreasing isocyanate index was in the order of 0% > 20% > 50% ESBO replacement. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The present work deals with the development of polyurethane–clay nanocomposite foams by replacing part of the synthetic polyol with castor oil derivative. Hydroxylated castor oil was converted into diethanol amide by transamidation and the resulting polyol was formulated into water‐blown foams. Modified montmorillonite clay was used as nanofiller in different amounts viz. 0.5%, 1.0%, 2.0%, and 5.0% by total weight of the foam formulation. Rheological measurements on the polyol–clay mixtures indicated that up to 1% clay loading there is no significant change in the viscosity with shear rate and beyond 2%, shear thinning occurred. X‐ray diffraction studies further substantiated these results. The effect of the modified clay on the density, mechanical properties such as compression strength, compression modulus, and microstructure of the foams were investigated. The filler thus added had a reinforcing effect on the foam as observed in the density and compression strength measurements. Differential scanning calorimetric studies on Tg and dynamic mechanical analyses on the modulus clearly indicated that 1% clay loading and above led to exfoliation and plasticizing effect. Exfoliated nanocomposites in compositions containing 1% clay and more yielded a much higher nucleation rate than intercalated ones leading to reduced cell size as observed by optical and scanning electron microscopy. Thus, castor oil, which is readily available, relatively inexpensive, and environmentally benign nonedible oil, has been successfully used to prepare filled semirigid foams which can find application in insulation and packing. POLYM. COMPOS. 34:1306–1312, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
Nanocomposites of rigid polyurethane foam with unmodified vermiculite clay are synthesized. The clay is dispersed either in polyol or isocyanate before blending. The viscosity of the polyol is found to increase slightly on the addition of clay up to 5 pphp (parts per hundred parts of polyol by weight). The gel time and rise time are significantly reduced by the addition of clay, indicating that the clay acts as a heterogeneous catalyst for the foaming and polymerization reactions. X‐ray diffraction and transmission electron microscopy of the polyurethane composite foams indicate that the clay is partially exfoliated in the polymer matrix. The clay is found to induce gas bubble nucleation resulting in smaller cells with a narrower size distribution in the cured foam. The closed cell content of the clay nanocomposite foams increases slightly with clay concentration. The mechanical properties are found to be the best at 2.3 wt% of clay when the clay is dispersed in the isocyanate; the compressive strength and modulus normalized to a density of 40 kg/m3 are 40% and 34% higher than the foam without clay, respectively. The thermal conductivity is found to be 10% lower than the foam without clay. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

19.
以一种多元胺类副产物为起始剂,制备了一种叔胺基聚多元醇。它具有粘度低,反应活性高,与其它多元醇相窝性好,价格低等优点,它用于硬质聚氨酯泡沫塑料制备时,使泡沫的强度,泡孔结构等得到明显改善,在聚氨醌泡生产领域具有良好的发展前途。  相似文献   

20.
Water‐blown bio‐based thermoplastic polyurethane (TPU) formulations were developed to fulfill the requirements of the reactive rotational molding/foaming process. They were prepared using synthetic and bio‐based chain extenders. Foams were prepared by stirring polyether polyol (macrodiol), chain extender (diol), surfactant (silicone oil), chemical blowing agent (distilled water), catalyst, and diisocyanate. The concentration of chain extender, blowing agent, and surfactant were varied and their effects on foaming kinetics, physical, mechanical, and morphological properties of foams were investigated. Density, compressive strength, and modulus of foams decrease with increasing blowing agent concentration and increase with increasing chain extender concentration, but are not significantly affected by changes in surfactant concentration. The foam glass‐transition temperatures increase with increasing blowing agent and chain extender concentrations. The foam cell size slightly increases with increasing blowing agent content and decreases upon surfactant addition (without any dependence on concentration), whereas chain extender concentration has no effect on cell size. Bio‐based 1,3‐propanediol can be used successfully for the preparation TPU foams without sacrificing any properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号