首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Up to 50 vol% of TiB2, TiC0.5N0.5, TiN, or TiC was added to Y2O3-stabilized tetragonal ZrO2 polycrystals (Y-TZP) and hot pressed under vacuum. The influence of the type of secondary phase on the microstructure and mechanical properties was studied, as a function of the hot-pressing temperature. The influence of the secondary-phase content on the mechanical properties was studied by varying the TiB2 content up to 50 vol%. Fully dense Y-TZP-based composites with very high toughness (up to 10 MPa·m1/2), excellent bending strength (up to 1237 MPa), and increased hardness, with respect to ZrO2 (Vickers hardness up to 1450 kg/mm2), were obtained.  相似文献   

2.
Significant increases in the critical fracture toughness (K IC ) over that of alumina are obtained by the stress-induced phase transformation in partially stabilized ZrO2 particles which are dispersed in alumina. More importantly, improved slow crack growth resistance is observed in the alumina ceramics containing partially stabilized ZrO2 particles when the stress-induced phase transformation occurs. Thus, increasing the contribution of the ZrO2 phase transformation by tailoring the Y2O3 stabilizer content not only increases the critical fracture toughness (KIC) but also the K Ia to initiate slow crack growth. For example, crack velocities ( v )≥10–9 m/s are obtained only at K Ia≥5 MPa.m1/2 in transformation-toughened ( K IC=8.5 MPa.m1/2) composites vs K Ia≥2.7 MPa.m1/2 for comparable velocities in composites where the transformation does not occur ( K IC=4.5 MPa.m1/2). This behavior is a result of crack-tip shielding by the dissipation of strain energy in the transformation zone surrounding the crack. The stress corrosion parameter n is lower and A greater in these fine-grained composite materials than in fine-grained aluminas. This is a result of the residual tensile stresses associated with larger (≥1 μm) monoclinic ZrO2 particles which reside along the intergranular crack path.  相似文献   

3.
Boron carbide/titanium diboride composites with 20 and 40 vol% particulate TiB2 and various amounts of free carbon were investigated with respect to microcrack toughening. In agreement with previous work, the mere addition of TiB2 was found to raise the toughness from 2.2 MPa·m1/2 up to 3.0 and 3.5 MPa·m1/2, respectively. A further and very significant increase of composite toughness up to 6.0 MPa·m1/2 was discovered upon the incorporation of free carbon. SEM and TEM observations reveal that this toughening is associated with microcracking at B4C-TiB2 phase boundaries. Microcracking is triggered by thin carbon interlayers, which are located at hetero interfaces and supply a weak fracture path.  相似文献   

4.
A novel microstructure of in situ produced TiC/TiB2/MoSi2 composite and its mechanical properties were investigated. The results indicate that TiC/TiB2/MoSi2 composites can be fabricated by reactive hot pressing the mixed powders of MoSi2, B4C, and Ti. A novel microstructure consisting of hollow particles of TiC and TiB2 grains in an MoSi2 matrix was obtained. Grains of in situ produced TiC and TiB2 were much finer, from 100 to 400 nm. During the fracture process, hollow particles relieved crack tip stress, encouraging crack branching and changing the original direction of the main crack. The highest bending strength of this composite achieved was 480 MPa, twice that of monolithic MoSi2, and the greatest fracture toughness of the composite reached 5.2 MPa·m1/2.  相似文献   

5.
Strength and fracture toughness results are presented for ZrO2 single crystals stabilized with Y2O3. The crystals (2 cm in diameter by 5 cm long) were prepared by skull melting. The partially stabilized compositions with 4 to 6 wt% Y2O3 showed a dramatic improvement in mechanical properties over the fully stabilized samples containing 20 wt% Y2O3, i.e. a strength exceeding 1000 MPa and a fracture toughness of 8 Mpa,.m 1/2 were achieved compared to 200 MPa and 2 Mpa.m1/2, respectively, for fully stabilized ZrO2 single crystals.  相似文献   

6.
Aqueous processing of Al2O3─ZrO2 (123 mol% CeO2) composites, combined with sintering conditions, was used to control the microstructure and its influence on the martensitic transformation temperature of t -ZrO2 and the transformation-toughening contribution at room temperature. The resultant ZrO2 grain sizes in the dense composites were related to the transformation-toughening behavior of t -ZrO2. The data show that (1) the best processing conditions exist when the electrophoretic mobilities of the two solids are positive, adequately high to ensure colloidal stability, efficient packing,and uniform ZrO2 distribution but differ greatly in magnitude, (2) the colloidal stability of ZrO2 controls the overall stability and the rheological and processing behavior of this mixture, (3) the grain size distribution in dense pieces sintered for 1 h at 1500°C is comparable to the particle size distribution of the powders, (4) the martensite start temperature for the tetragonal to-monoclinic transformation in Al2O3 containing 20 and 40 vol% ZrO2 increases and can approach 0°C with increasing average ZrO2 grain size, and as a result, (5) the fracture toughness values at room temperature are raised from 4–5 MPa.m1/2 to 9–12 MPa.m1/2 for these two compositions.  相似文献   

7.
The fracture toughness of Al2O3 is considerably increased by the incorporation of fine monoclinic ZrO2 particles. Hot-pressed composites containing 15 vol % ZrO2 yield Klcvalues of ∼ 10 MN/m3/2, twice that of the A12O3 matrix. It is hypothesized that this increase results from a high density of small matrix microcracks absorbing energy by slow propagation. The microcracks are formed by the expansion of ZrO2during the tetragonal → monoclinic transformation. Since extremely high tensile stresses develop in the matrix, very small ZrO2 particles can act as crack formers, thus limiting the critical flaw size to small values.  相似文献   

8.
CrN powder consisting of granular particles of ∼3 μm has been prepared by self-propagating high-temperature synthesis under a nitrogen pressure of 12 MPa using Cr metal. Dense pure CrN ceramics and CrN/ZrO2(2Y) composites in the CrN-rich region have been fabricated by hot isostatic pressing for 2 h at 1300°C and 196 MPa. The former ceramics have a fracture toughness ( K IC) of 3.3 MPa ·m1/2 and a bending strength (σb) of 400 MPa. In the latter materials almost all of the ZrO2(2Y) grains (0.36–0.41 μm) are located in the grain boundaries of CrN (∼4.6 μm). The values of K IC (6.1 MPa · m1/2) and σb (1070 MPa) are obtained in the composites containing 50 vol% ZrO2(2Y).  相似文献   

9.
The cubic ( c -ZrO2) and tetragonal zirconia ( t -ZrO2) phase stability regions in the system ZrO2–Y2O3–Ta2O5 were delineated. The c -ZrO2 solid solutions are formed with the fluorite structure. The t -ZrO2 solid solutions having a c/a axial ratio (tetragonality) smaller than 1.0203 display high fracture toughness (5 to 14 MPa · m1/2), and their instability/transformability to monoclinic zirconia ( m -ZrO2) increases with increasing tetragonality. On the other hand, the t -ZrO2 solid solutions stabilized at room temperature with tetragonality greater than 1.0203 have low toughness values (2 to 5 MPa · m1/2), and their transformability is not related to the tetragonality.  相似文献   

10.
Al2O3–ZrO2–SiC whisker composites were prepared by surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3 and SiC whisker. The fabricated composites were characterized by a uniform spatial distribution of ZrO2 and SiC whisker phases throughout the Al2O3 matrix. The fracture toughness values of the Al2O3–15 vol% ZrO2–20 vol% SiC whisker composites (∼12 MPa.m1/2) are substantially greater than those of comparable Al2O3–SiC whisker composites, indicating that both the toughening resulting from the process zone mechanism and that caused by the reinforced SiC whiskers work simultaneously in hot-pressed composites.  相似文献   

11.
Intermetallic CoAl powder has been prepared via self-propagating high-temperature synthesis (SHS). Dense CoAl materials (99.6% of theoretical) with the combined additions of ZrO2(3Y) and Al2O3 have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The microstructures are such that tetragonal ZrO2 (0.3 μm) and Al2O3 (0.5 μm) particles are located at the grain boundaries of the CoAl (8.5 μm) matrix. Improved mechanical properties are obtained; especially the fracture toughness and the bending strength of the materials with ZrO2(3Y)/Al2O3= 16/4 mol% are 3.87 MPa·m1/2 and 1080 MPa, respectively, and high strength (>600 MPa) can be retained up to 1000°C.  相似文献   

12.
Glasses of composition 3ZrO2O · 2SiO2 were prepared by the sol-gel process from metal alkoxides. Tetragonal ZrO2 was precipitated by appropriate heat treatment at 1000° to 1200°C. The fracture toughness of these glass-ceramics increased with increasing crystallite size of the tetragonal ZrO2, reaching ∼5.0 MN/m3/2 at a size of ∼40 nm. The higher fracture toughness was attributed to tetragonal → monoclinic ZrO2 transformation toughening.  相似文献   

13.
The densification of non-oxide ceramics like titanium boride (TiB2) has always been a major challenge. The use of metallic binders to obtain a high density in liquid phase-sintered borides is investigated and reported. However, a non-metallic sintering additive needs to be used to obtain dense borides for high-temperature applications. This contribution, for the first time, reports the sintering, microstructure, and properties of TiB2 materials densified using a MoSi2 sinter-additive. The densification experiments were carried out using a hot-pressing and pressureless sintering route. The binderless densification of monolithic TiB2 to 98% theoretical density with 2–5 μm grain size was achieved by hot pressing at 1800°C for 1 h in vacuum. The addition of 10–20 wt% MoSi2 enables us to achieve 97%–99%ρth in the composites at 1700°C under similar hot-pressing conditions. The densification mechanism is dominated by liquid-phase sintering in the presence of TiSi2. In the pressureless sintering route, a maximum of 90%ρth is achieved after sintering at 1900°C for 2 h in an (Ar+H2) atmosphere. The hot-pressed TiB2–10 wt% MoSi2 composites exhibit high Vickers hardness (∼26–27 GPa) and modest indentation toughness (∼4–5 MPa·m1/2).  相似文献   

14.
This work presents a novel method for preparing an Al2O3/YAG/ZrO2 ternary eutectic whereby combustion synthesis melt casting has been combined with the ultra-high gravity (UHG) technique. The fabricated product had a relative density of 99.3% of the theoretical one. Phase composition and microstructure analyses indicated that the application of UHG resulted in a metal-free ceramic microstructure with no porosity or microcracks. The microstructure comprises ZrO2 rods dispersed in Al2O3. The product had 17.82 GPa Vickers hardness and 5.51 MPa·m1/2 fracture toughness.  相似文献   

15.
The compound YNbO4 is a 3–5 analogue of ZrO2 with two polymorphs: low-temperature monoclinic and high-temperature tetragonal forms. YNbO4 powder with a surface area of 40 m2/g was prepared from citrate complexes. The powder sintered to theoretical density at 1550°C. Unlike pure ZrO2, YNbO4 can be cooled through the tetragonal-to-monoclinic phase transformation without cracking. The phase transformation is gradual and takes place by shear, resulting in twinning.  相似文献   

16.
In a recent work, 1 we have reported the optimization of the spark plasma sintering (SPS) parameters to obtain dense nanostructured 3Y-TZP ceramics. Following this, the present work attempts to answer some specific issues: (a) whether ZrO2-based composites with ZrB2 reinforcements can be densified under the optimal SPS conditions for TZP matrix densification (b) whether improved hardness can be obtained in the composites, when 30 vol% ZrB2 is incorporated and (c) whether the toughness can be tailored by varying the ZrO2–matrix stabilization as well as retaining finer ZrO2 grains. In the present contribution, the SPS experiments are carried out at 1200°C for 5 min under vacuum at a heating rate of 600 K/min. The SPS processing route enables retaining of the finer t -ZrO2 grains (100–300 nm) and the ZrO2–ZrB2 composite developed exhibits optimum hardness up to 14 GPa. Careful analysis of the indentation data provides a range of toughness values in the composites (up to 11 MPa·m1/2), based on Y2O3 stabilization in the ZrO2 matrix. The influence of varying yttria content, t -ZrO2 transformability, and microstructure on the properties obtained is discussed. In addition to active contribution from the transformation-toughening mechanism, crack deflection by hard second phase brings about appreciable increment in the toughness of the nanocomposites.  相似文献   

17.
Dense, ZrO2-dispersed Si3N4 composites without additives were fabricated at 180 MPa and ∼1850° to 1900°C for l h by hot isostatic pressing using a glass-encapsulation method; the densities reached >96% of theoretical. The dispersion of 20 wt% of 2.5YZrO2 (2.5 mol% Y2O3) in Si3N4 was advantageous to increase the room-temperature fracture toughness (∼7.5 MPa˙m1/2) without degradation of hardness (∼15 GPa) because of the high retention of tetragonal ZrO2. The dependence of fracture toughness of Si3N4–2.5YZrO2 on ZrO2 content can be related to the formation of zirconium oxynitride because of the reaction between ZrO2 and Si3N4 matrix in hot isostatic pressing.  相似文献   

18.
The fracture strengths of sintered Al2O3 containing 20 and 40 vol% ZrO2(12 mol% CeO2)—zirconia-toughened alumina (ZTA)—composites along with the fracture resistance can be increased (e.g., to ∼900 MPa and >12 Mpa·m1/2, respectively), by increasing the mean grain size of the t -ZrO2 (and the Al2O3) from ∼0.5 μm to ∼3 μm. At these lower t -ZrO2 contents, the fracture strength-fracture resistance curves show a continuous rise as opposed to the strength maxima observed in polycrystalline t -ZrO2(12 mol% CeO2), CeTZP, and ZrO2(12 mol% CeO2) ceramics containing ≤20 vol% Al2O3. The toughened composites also exhibit excellent damage resistance with fracture strengths of 500 MPa retained with surfaces containing ∼150- N Vickers indentations which produce cracks of ∼160-μm radius. Greater damage resistance correlates with an increase in the apparent R -curve response of these composites.  相似文献   

19.
Simulataneous additions of SrO and Al2O3 to ZrO2 (12 mol% CeO2) lead to the in situ formation of strontium aluminate (SrO · 6Al2O3) platelets (∼0.5 μm in width and 5 to 10 μm in length) within the Ce-TZP matrix. These platelet-containing Ce-TZP ceramics have the strength (500 to 700 MPa) and hardness (13 to 14 GPa) of Ce-TZP/Al2O3 while maintaining the high toughness (14 to 15 MPa ± m1/2) of Ce-TZP. Optimum room-temperature properties are obtained at SrO/Al2O3 molar ratios between 0.025 and 0.1 for ZrO2 (12 mol% CeO2) with starting Al2O3 contents ranging between 15 and 60 vol%. The role of various toughening mechanisms is discussed for these composite ceramics.  相似文献   

20.
Near fully dense ZrO2(3Y)/Fe3Al composites with significantly improved fracture toughness were synthesized by hot-press sintering at 1350°C. High fracture toughness and bending-strength values, 36 MPa·m1/2 and 1321 MPa, respectively, were achieved in 40 vol% Fe3Al composite ceramics, whereas those same values for ZrO2(3Y) alone were 10 MPa·m1/2 and 988 MPa, respectively. Microscopic observation of the crack path revealed that Fe3Al particle uniformly dispersed in the matrix have obvious crack-bridging effect. Improved thermal-shock resistance was also obtained, which was attributed to higher toughness, thermal conductivity, and lower Young's modulus by adding of Fe3Al particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号