首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The role of nitric oxide (NO) in lung injury remains unclear. Both beneficial and detrimental roles have been proposed. In this study, we used mutant mice lacking the inducible nitric oxide synthase (iNOS) to assess the role of this isoform in sepsis-associated lung injury. Wild-type and iNOS knockout mice were injected with either saline or Escherichia coli endotoxin (LPS) 25 mg/kg and killed 6, 12, and 24 h later. Lung injury was evaluated by measuring lactate dehydrogenase activity in the bronchoalveolar lavage, pulmonary wet/dry ratio, and immunostaining for nitrotyrosine formation. In the wild-type mice, LPS injection elicited more than a 3-fold rise in lactate dehydrogenase activity, a significant rise in lung wet/dry ratio and extensive nitrotyrosine staining in large airway and alveolar epithelium, macrophages, and pulmonary vascular cells. This was accompanied by induction of iNOS protein and increased lung nitric oxide synthase activity. By comparison, LPS injection in iNOS knockout mice elicited no iNOS induction and no significant changes in lung NOS activity, lactate dehydrogenase activity, lung wet/dry ratio, or pulmonary nitrotyrosine staining. These results indicate that mice deficient in iNOS gene are more resistant to LPS-induced acute lung injury than are wild-type mice.  相似文献   

2.
Lipocalin-type prostaglandin D2 synthase is the enzyme responsible for the synthesis of prostaglandin D2, a major prostaglandin in the central nervous system. We analysed the effects of thyroid hormone deprivation on prostaglandin D2 synthase gene expression in the developing rat brain. By in situ hybridization, the strongest prostaglandin D2 synthase mRNA signal was detected in the leptomeninges and choroid plexus. The signal was greatly reduced in the cerebellar interlaminar meninges of hypothyroid rats aged 15 and 25 days. Immunohistochemical studies defined changes in the location of the prostaglandin D2 synthase protein. In control but not in hypothyroid animals, Cajal-Retzius neurons of cortical layer I, and pyramidal cortical plate neurons were intensely stained on postnatal day 5. Conversely, prostaglandin D2 synthase protein levels were higher in neurons of the CA1 and CA3 regions and the dentate gyrus of the hippocampus of hypothyroid animals on postnatal days 5, 15 and 25, and also in subplate neurons on postnatal days 15 and 25. In agreement with the in situ hybridization and northern blotting data, the major difference was found in the cerebellar interlaminar meninges of hypothyroid animals, where the protein was clearly down-regulated on postnatal days 15 and 25. These results show that hypothyroidism causes both age- and region-specific alterations in the expression and location of the prostaglandin D2 synthase during postnatal brain development, probably reflecting a cell-specific regulatory effect of thyroid hormone on the prostaglandin D2 synthase.  相似文献   

3.
Estrogens influence the differentiation and maintenance of reproductive tissues and affect lipid metabolism and bone remodeling. Two estrogen receptors (ERs) have been identified to date, ERalpha and ERbeta. We previously generated and studied knockout mice lacking estrogen receptor alpha and reported severe reproductive and behavioral phenotypes including complete infertility of both male and female mice and absence of breast tissue development. Here we describe the generation of mice lacking estrogen receptor beta (ERbeta -/-) by insertion of a neomycin resistance gene into exon 3 of the coding gene by using homologous recombination in embryonic stem cells. Mice lacking this receptor develop normally and are indistinguishable grossly and histologically as young adults from their littermates. RNA analysis and immunocytochemistry show that tissues from ERbeta -/- mice lack normal ERbeta RNA and protein. Breeding experiments with young, sexually mature females show that they are fertile and exhibit normal sexual behavior, but have fewer and smaller litters than wild-type mice. Superovulation experiments indicate that this reduction in fertility is the result of reduced ovarian efficiency. The mutant females have normal breast development and lactate normally. Young, sexually mature male mice show no overt abnormalities and reproduce normally. Older mutant males display signs of prostate and bladder hyperplasia. Our results indicate that ERbeta is essential for normal ovulation efficiency but is not essential for female or male sexual differentiation, fertility, or lactation. Future experiments are required to determine the role of ERbeta in bone and cardiovascular homeostasis.  相似文献   

4.
We have analyzed in vivo effects of the murine IL-4 mutant Q116D/Y119D (QY), which forms unproductive complexes with IL-4Ralpha and is an antagonist for IL-4 and IL-13 in vitro. Treatment of BALB/c mice with QY during immunization with OVA completely inhibited synthesis of OVA-specific IgE and IgG1. BALB/c-derived knockout mice lacking either IL-4 or IL-4Ralpha also did not develop specific IgE or IgG1, but mounted a much stronger IgG2a and IgG2b response than wild-type mice. In contrast, QY treatment of normal BALB/c mice suppressed specific IgG2a, IgG2b, and IgG3 synthesis, which may indicate the development of tolerance toward the allergen. Associated with the lack of IgE synthesis in QY-treated wild-type mice and in IL-4(-/-) mice used as a control was the failure to develop immediate cutaneous hypersensitivity or anaphylactic shock upon rechallenge. Interestingly, QY treatment also inhibited humoral immune responses and allergic reactivity in SJL/J mice, a strain that did not produce IgE, but displayed IgE-independent mast cell degranulation mediated by specific IgG1. We conclude that QY inhibits Ag-specific humoral immune responses and allergic symptoms mediated either by IgE or IgG1. It needs to be clarified how QY abrogates synthesis of IgG2a, IgG2b, and IgG3, but the induction of tolerance toward nonhazardous protein Ags should be advantageous for therapy of atopic disorders and other Th2-dominated diseases.  相似文献   

5.
Activation of beta-adrenergic receptors (beta-ARs) in vivo is an important means by which animals regulate cardiac performance, vascular tone, lipid and carbohydrate metabolism, and behavior. The advent of targeted gene disruption in mice has led to significant advances in our understanding of the role that beta-AR subtypes play in these processes, and this technique has become an important tool for the study of G protein coupled receptors in general. To date, targeted disruption of both beta1- and beta3-ARs in mice has been reported. Mice lacking beta1-ARs are unresponsive to cardiac beta-AR stimulation, suggesting that neither beta2- nor beta3-ARs couple to inotropic or chronotropic responses in the mouse. Conversely, mice lacking beta3-ARs retain at least some adipose beta-AR responsiveness through remaining beta1- and beta2-ARs, suggesting that all three beta-AR subtypes mediate similar functions in this tissue. While these knockout models have been extremely valuable tools for revealing the roles that individual beta-ARs play in whole animal physiology, it is also useful to integrate the results of experiments derived from either transgenic overexpression of beta-ARs or purely pharmacological approaches to the study of beta-AR function in order to create a comprehensive model of beta-AR function in vivo.  相似文献   

6.
Basigin is a transmembrane glycoprotein belonging to the immunoglobulin superfamily. Using the knockout mouse lacking the basigin gene (Bsg), we analyzed the function of basigin in adult mice lacking the gene [Bsg (-1-)]. Although histochemical studies on the localization of basigin (also called HT7 and neurothelin) strongly indicated that it is involved in the function of the blood-brain barrier, basigin knockout mice showed only a little difference, if any, to wild-type mice in the function of the blood brain-barrier. The mitogenic response of lymphocytes upon mixed lymphocyte reaction was greater in Bsg (-1-) mice. Finally, Bsg (-1-) mice repeatedly visited filter paper impregnated with acetic acid or isozine, indicating an abnormality in either reception of the odor or behavior as to it.  相似文献   

7.
Signaling by tumor necrosis factor type 1 receptor (TNFR-1) is required for the initiation of liver regeneration after partial hepatectomy. Using knockout mice that lack either TNFR-1 or TNFR-2, we determined whether signaling through TNF receptors is important for liver injury and hepatocyte proliferation induced by carbon tetrachloride (CCl4). Lack of TNFR-1 inhibited hepatocyte DNA synthesis after CCl4 injection. At 44 hours after the injection, replication of hepatocytes in TNFR-1 was 50% to 90% lower than in wild-type (WT) animals, depending on the dose injected. In WT animals, hepatocyte replication was essentially completed by 4 days after CCl4 injection, but replication at a low level persisted in TNFR-1 mice for at least 2 weeks. TNFR-1 knockout mice had little detectable NF-kappa B and STAT3 binding during the first 5 hours after CCl4, high plasma TNF, and reduced levels of plasma interleukin (IL)-6 and liver IL-6 mRNA. Injection of IL-6 30 minutes before CCl4 administration corrected the deficiency of hepatocyte replication at 44 hours and restored STAT3 binding to normal levels. In contrast, mice lacking TNFR-2 did not differ significantly from WT mice in NF-kappa B and STAT3 binding, IL-6 and TNF levels, or hepatocyte replication. Although AP-1 binding was induced in WT TNFR-1 and TNFR-2 knockout mice, binding in TNFR-2 knockouts was lower than in WT mice. C/EBP binding was much lower in TNFR-1 and TNFR-2 knockout mice than in WT mice. As assessed by morphological analysis and alanine aminotransferase levels, the acute injury caused by CCl4 appeared to be similar in the three groups of animals, but subsequent regeneration was impaired in mice lacking TNFR-1. We conclude that a TNFR-1 signaling pathway involving NF-kappa B, IL-6, and STAT3 is an important component of the hepatocyte mitogenic response induced by CCl4 injury in mouse liver.  相似文献   

8.
Essential functions of synapsins I and II in synaptic vesicle regulation   总被引:1,自引:0,他引:1  
Synaptic vesicles are coated by synapsins, phosphoproteins that account for 9% of the vesicle protein. To analyse the functions of these proteins, we have studied knockout mice lacking either synapsin I, synapsin II, or both. Mice lacking synapsins are viable and fertile with no gross anatomical abnormalities, but experience seizures with a frequency proportional to the number of mutant alleles. Synapsin-II and double knockouts, but not synapsin-I knockouts, exhibit decreased post-tetanic potentiation and severe synaptic depression upon repetitive stimulation. Intrinsic synaptic-vesicle membrane proteins, but not peripheral membrane proteins or other synaptic proteins, are slightly decreased in individual knockouts and more severely reduced in double knockouts, as is the number of synaptic vesicles. Thus synapsins are not required for neurite outgrowth, synaptogenesis or the basic mechanics of synaptic vesicle traffic, but are essential for accelerating this traffic during repetitive stimulation. The phenotype of the synapsin knockouts could be explained either by deficient recruitment of synaptic vesicles to the active zone, or by impaired maturation of vesicles at the active zone, both of which could lead to a secondary destabilization of synaptic vesicles.  相似文献   

9.
Prostaglandin (PG) D2 is the most abundant prostanoid produced in the central nervous system of mammals and has been implicated in the modulation of neural functions such as sleep induction, nociception, regulation of body temperature, and odor responses. We generated gene-knockout mice for lipocalin-type PGD2 synthase (L-PGDS) and found that the intrathecal administration of PGE2, an endogenous pain-producing substance, failed to elicit allodynia (touch-evoked pain), which is one typical phenomenon of neuropathic pain, whereas it evoked thermal hyperalgesia, in L-PGDS-/- mice. We also found that the allodynic response induced by the gamma-aminobutyric acid (GABA)A receptor antagonist bicuculline was selectively abolished in the L-PGDS-/- mice, among excitatory and inhibitory agents that induced allodynia in wild-type mice. Interestingly, simultaneous injection of a femtogram amount of PGD2 with PGE2 or bicuculline induced allodynia in L-PGDS-/- mice to the same extent as in wild-type mice. The PGE2- or bicuculline-evoked allodynia in wild-type and in PGD2-supplemented L-PGDS-/- mice was blocked by a PGD2 receptor antagonist given in a femtogram amount. These results reveal that endogenous PGD2 is essential for both PGE2- and bicuculline-induced allodynia.  相似文献   

10.
The physiological role of prion protein (PrP) remains unknown. Mice devoid of PrP develop normally but are resistant to scrapie; introduction of a PrP transgene restores susceptibility to the disease. To identify the regions of PrP necessary for this activity, we prepared PrP knockout mice expressing PrPs with amino-proximal deletions. Surprisingly, PrP lacking residues 32-121 or 32-134, but not with shorter deletions, caused severe ataxia and neuronal death limited to the granular layer of the cerebellum as early as 1-3 months after birth. The defect was completely abolished by introducing one copy of a wild-type PrP gene. We speculate that these truncated PrPs may be nonfunctional and compete with some other molecule with a PrP-like function for a common ligand.  相似文献   

11.
In this study, we investigated the molecular basis of the ability of staurosporine to induce G1 arrest in murine embryonic fibroblasts (MEFs). We used MEFs from transgenic mice lacking several negative regulators of the G1/S phase transition including cells from mice lacking p53, p21, retinoblastoma (Rb), or p16 genes. We found that p53 function was not essential for staurosporine-induced G1 arrest. In contrast, MEFs from mice lacking Rb genes showed approximately a 70% reduced capacity to arrest in the G1 phase following staurosporine treatment. In support of a role for Rb in staurosporine-induced G1 arrest, rat embryonic fibroblasts stably overexpressing cyclin D1/Cdk4(R24C) exhibited approximately a 50% reduced G1 arrest response to staurosporine. The role of Rb in determining the degree of staurosporine-induced G1 arrest did not depend on the function of the cyclin-dependent kinase inhibitors p16 or p21 because MEFs lacking either of these genes were still capable of undergoing G1 arrest following staurosporine exposure. Our studies provide evidence of an important role for the Rb protein in determining the degree of staurosporine-induced G1 arrest in the first cell cycle.  相似文献   

12.
13.
14.
To determine the relative contributions of respiratory burst-derived reactive oxygen intermediates (ROI) versus reactive nitrogen intermediates (RNI) to macrophage-mediated intracellular host defense, mice genetically deficient in these mechanisms were challenged with Leishmania donovani, a protozoan that selectively parasitizes visceral tissue macrophages. During the early stage of liver infection at wk 2, both respiratory burst-deficient gp91(phox)-/- (X-linked chronic granulomatous disease [X-CGD]) mice and inducible nitric oxide synthase (iNOS) knockout (KO) mice displayed comparably increased susceptibility. Thereafter, infection was unrestrained in mice lacking iNOS but was fully controlled in X-CGD mice. Mononuclear cell influx into infected liver foci in X-CGD and iNOS KO mice was also overtly impaired at wk 2. However, granuloma assembly in parasitized tissue eventually developed in both hosts but with divergent effects: mature granulomas were functionally active (leishmanicidal) in X-CGD mice but inert in iNOS-deficient animals. These results suggest that (a) ROI and RNI probably act together in the early stage of intracellular infection to regulate both tissue recruitment of mononuclear inflammatory cells and the initial extent of microbial replication, (b) RNI alone are necessary and sufficient for eventual control of visceral infection, and (c) although mature granulomas have traditionally been associated with control of such infections, these structures fail to limit intracellular parasite replication in the absence of iNOS.  相似文献   

15.
To investigate the contribution of individual serotonin (5-hydroxytryptamine; 5-HT) receptors to mood control, we have used homologous recombination to generate mice lacking specific serotonergic receptor subtypes. In the present report, we demonstrate that mice without 5-HT1A receptors display decreased exploratory activity and increased fear of aversive environments (open or elevated spaces). 5-HT1A knockout mice also exhibited a decreased immobility in the forced swim test, an effect commonly associated with antidepressant treatment. Although 5-HT1A receptors are involved in controlling the activity of serotonergic neurons, 5-HT1A knockout mice had normal levels of 5-HT and 5-hydroxyindoleacetic acid, possibly because of an up-regulation of 5-HT1B autoreceptors. Heterozygote 5-HT1A mutants expressed approximately one-half of wild-type receptor density and displayed intermediate phenotypes in most behavioral tests. These results demonstrate that 5-HT1A receptors are involved in the modulation of exploratory and fear-related behaviors and suggest that reductions in 5-HT1A receptor density due to genetic defects or environmental stressors might result in heightened anxiety.  相似文献   

16.
Prostaglandin D synthase (PGD synthase) or beta-trace protein is a major constituent of human cerebrospinal fluid (CSF) representing-3% of the total CSF protein. We have recently developed a highly specific immunofluorometric assay for PGD synthase, which enabled us to quantify the presence of PGD synthase in fluids and tissues not associated with the CNS. In this report we provide quantitative data of the presence of PGD synthase in CSF and serum from 302 subjects with various neurological diseases and symptoms. PGD synthase levels in CSF are approximately 35-fold higher than those of serum, with a median concentration of 11,299 micrograms/L. A statistically significant association of PGD synthase concentration in CSF was observed with both patient age and gender. There was no correlation between PGD synthase concentration in serum and patient age or gender. To evaluate the clinical utility of PGD synthase in diagnosing neurological diseases, the distribution pattern of PGD synthase in CSF and serum was examined for each neuropathology of 268 patients whose diagnosis was known. No statistical difference was observed between PGD synthase concentration in the CSF (129 cases) or the serum (94 cases) of multiple sclerosis afflicted subjects in comparison to all other patients studied. The distribution pattern was also not different for PGD synthase levels in CSF of patients with HIV/AIDS related neuropathies, viral meningitis and fibromyalgia. We conclude that PGD synthase measurement presents no clinical utility in diagnosing neurological disorders in adulthood. PGD synthase may have a physiological and/or pathological role in the developing brain and in neurodegenerative diseases.  相似文献   

17.
The mechanism by which psychostimulants act as calming agents in humans with attention-deficit hyperactivity disorder (ADHD) or hyperkinetic disorder is currently unknown. Mice lacking the gene encoding the plasma membrane dopamine transporter (DAT) have elevated dopaminergic tone and are hyperactive. This activity was exacerbated by exposure to a novel environment. Additionally, these mice were impaired in spatial cognitive function, and they showed a decrease in locomotion in response to psychostimulants. This paradoxical calming effect of psychostimulants depended on serotonergic neurotransmission. The parallels between the DAT knockout mice and individuals with ADHD suggest that common mechanisms may underlie some of their behaviors and responses to psychostimulants.  相似文献   

18.
Fragile X syndrome, a form of mental retardation caused by inadequate levels of fragile X mental retardation protein (FMRP), is characterized by extreme sensitivity to sensory stimuli and increased behavioral and hormonal reactivity to stressors. Fmr1 knockout mice lack FMRP and exhibit abnormal responses to auditory stimuli. This study sought to determine whether Fmr1 knockout mice on an F1 hybrid background are normal in their response to footshock. Knockout mice were also examined for signs of hyperexcitation across an extended trial range, and serum corticosterone levels were evaluated in response to various stressors. The ability to acquire conditioned taste aversion was also assessed. Knockout mice exhibited no impairment in associative aversive learning or memory, since they successfully expressed conditioned taste aversion. Footshock-sensitivity, freezing behavior, and corticosterone response to various stressors did not differ between knockout and wild-type mice. However, knockout mice exhibited significantly increased responses during the extended test. The knockout mice’s increased responsiveness to footshock in the extended test may be an indication of increased vulnerability to stress or enhanced emotional reactivity. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
20.
Previous studies have demonstrated that the galanin system modulates responses to drugs of abuse such as morphine. The current study examined whether genetic deletion of galanin could affect the locomotor and reinforcing effects of cocaine in mice. We analyzed spontaneous motor activity and cocaine-induced hyperactivity in wild-type (GAL-WT) and knockout mice lacking galanin (GAL-KO) maintained on the 129/OlaHsd background. Our results indicate that cocaine enhanced locomotion (defined as moving more than 5 cm) dose-dependently in GAL-WT and GAL-KO mice. However, general activity (total beam breaks) was increased by cocaine only in GAL-WT mice. An additional experiment indicated that galnon, a nonselective galanin receptor agonist, did not affect cocaine-induced hyperactivity. In a second set of experiments, mice of both genotypes were trained to self-administer cocaine under a fixed ratio schedule, tested with various doses of cocaine and under different schedules of reinforcement. This set of experiments showed that cocaine self-administration did not differ markedly between genotypes. However, while GAL-WT mice acquired cocaine self-administration, a median split analysis showed that mice could be divided into large and small drug takers, whereas all GAL-KO mice behaved as small drug takers. Our results indicate that wild-type and galanin knockout mice on a congenic 129/OlaHsd background are responsive to the locomotor effects of cocaine and can acquire intravenous cocaine self-administration. However, the phenotype observed in GAL-KO mice does not support a major role for galanin in cocaine-induced hyperlocomotion and self-administration. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号