首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The role of androgens and the androgen receptor (AR) in the development and progression of breast cancer is poorly understood. To further define a potential model for androgen action in breast cancer, MDA-MB-453 cells, which express AR in the absence of oestrogen receptors and progesterone receptors, were further characterised in terms of AR expression and androgen responsiveness. High level expression of AR was confirmed by northern blot analysis, radioligand binding and immunocytochemistry, and could not be accounted for by AR gene amplification. Three endogenous androgen-responsive genes (fatty acid synthetase, gross cystic disease fluid protein of 15 kDa and prolactin receptor) and a transfected reporter gene, containing an androgen-responsive element, were induced following androgen administration. A synthetic androgen, mibolerone, induced moderate (27% above control) stimulation of MDA-MB-453 cell proliferation, which was abrogated by the simultaneous administration of the synthetic androgen antagonist, anandron, demonstrating that the effect was AR-mediated. In summary, MDA-MB-453 cells express high levels of functional AR, and thus provide a valuable in vitro model for further studies on androgen regulation of gene expression, and perhaps cell proliferation in breast cancer.  相似文献   

4.
Sex steroid-binding activities have been identified by several authors in normal and pathological thyroids and the expression of the canonic androgen receptor (AR) has recently been demonstrated in human thyroid follicular cells. In order to assess what influence, if any, androgen exposure has on thyroid cell growth, the effect of dihydrotestosterone (DHT) on [3H]thymidine (thy) incorporation and cell proliferation was investigated in thyroid follicular cells in vitro. In a primary culture of goitrous cells, DHT induced a significant reduction of [3H]thy incorporation at concentrations ranging from 10(-12) to 10(-8) M, with a more pronounced effect at 10(-9) M. At this concentration, the inhibitory effect was evident after both 24 and 48 h of treatment and in various types of primary thyroid cell cultures. In goitrous cells, the DHT-induced decrease of [3H]thy was associated with a reduction of expression of the proliferation-associated nuclear Ki-67 antigen, a protein commonly used to assess cell growth fraction. In TPC cells, an AR-positive thyroid papillary carcinoma cell line, DHT at concentrations between 10(-12) and 10(-8) M significantly decreased the growth rate. DHT (10(-9) M) produced an approximately 50-60% inhibition of cell proliferation and the antiandrogen cyproterone acetate was capable of reversing such effects. The DHT-induced reduction of TPC cell proliferation was associated with a significant reduction of c-myc RNA levels. Thyroperoxidase mRNA levels and thyroglobulin production were not reduced by androgen in primary cultures of goitrous cells. In conclusion, our results indicated that androgens may have a role in this gland by reducing the proliferation, but not the function, of follicular cells.  相似文献   

5.
Whether androgen regulates the proliferation and survival of androgen-responsive prostate cancer cells directly or indirectly via a paracrine pathway initiated in androgen receptor (AR)-expressing stromal cells is unknown. To resolve this issue, female mice heterozygous for the testicular feminized male loss of function mutation in their X-linked AR genes were cross-bred to T cell-defective homozygous male nude mice. Using a PCR-based restriction enzyme digestion method, the resulting AR/tfm, Nu/nu F1 hybrid females were identified and back-crossed to homozygous male nude mice to produce AR-null male nude mice lacking both AR and T-cell function. Androgen-responsive PC-82 human prostate cancers were xenografted into these AR-null versus AR-wild-type male nude mice. In both backgrounds, the cancer cells did not grow in nonandrogenized hosts. In contrast, PC-82 prostate cancer cells grew with identical characteristics (i.e., take rate, morphology, PSA expression, growth rate, and percentage of cell proliferating or dying) in androgenized hosts of both backgrounds. Likewise, in both backgrounds, androgen ablation of mice bearing growing PC-82 cancers resulted in the inhibition of proliferation and activation of programmed (apoptotic) cell death of the cancer cells. These results demonstrate that both the androgen-stimulated proliferation and the suppression of programmed cell death of PC-82 human prostate cancer cells are initiated by the AR pathway directly within these cancer cells themselves and do not involve initiation by AR-expressing stromal cells in a paracrine manner.  相似文献   

6.
7.
8.
Transforming growth factor-beta 1 (TGF-beta1) arrests intestinal epithelial cells (RIE-1 and IEC-6) in the G1 phase of the cell cycle and inhibits cyclin D1 expression. This report describes experiments designed to elucidate the mechanism of cyclin D1 inhibition and to determine whether inhibition of cyclin D1 expression is the cause, rather than the result, of TGF-beta1-mediated cell cycle arrest. TGF-beta1 inhibition of IEC-6 cell proliferation was associated with a decrease in the abundance of cyclin D1/Cdk4 complexes and a corresponding decrease in Cdk4-dependent phosphorylation of the retinoblastoma protein. Metabolic labeling studies indicated that TGF-beta1 inhibited cyclin D1 synthesis without altering the rate of cyclin D1 protein degradation. Cyclin D1 antisense oligonucleotides blocked serum-stimulated induction of cyclin D1 and DNA synthesis, whereas cyclin D1 sense oligonucleotides had no effect. RIE-1 cells were engineered to overexpress human cyclin D1 under the control of a tetracycline-repressible promoter. These cells entered S phase in the presence of TGF-beta1 only when human cyclin D1 was derepressed by the withdrawal of tetracycline. These data indicate that TGF-beta1 inhibits the synthesis of cyclin D1 in gut epithelial cells and that this inhibition is the cause, rather than the result, of TGF-beta1-mediated arrest of intestinal epithelial cell proliferation.  相似文献   

9.
Hormonal factors have been implicated in the development of both female and male breast cancers (MBC). However, MBCs are rare and seem to have different biological behavior than those of females. The aim of this study was to evaluate proliferative activity and to establish an association with steroid hormone receptor concentration and clinicopathological parameters in MBC. Proliferative activity was assessed in 18 MBC by mitotic figure counts and immunohistochemical evaluation of MIB-1 and proliferating cell nuclear antigen (PCNA). Estrogen (ER), progesterone (PR) and androgen (AR) receptors were evaluated in serial section from the same tumor by immunohistochemistry. PCNA (range 17-73%; mean, 51.6%) and MIB-1 (range 18.5-58%; mean 38.4%) were positive correlated with the mitotic rate. High proliferative activity assessed either by mitotic index or MIB-1 expression was associated with more poorly differentiated tumors. Sixty one percent (11/18) of the tumors were ER+, 72% (13/18) PR+ and 38.5% (5/13) AR+. Proliferative activity in tumors displaying ER+/PR+ phenotype showed a tendency to be higher than in ER-/PR- tumors. This difference was statistically significant when MIB-1 expression was used as proliferation marker. An association between AR concentration and age at diagnosis was found; in the AR negative group (8/13) mean age at diagnosis was 54.4 +/- 7.3 which was significantly lower than the age of patients with AR+ tumors, 63.2 +/- 11.1 (5/13). Results presented here show that decreased androgen action (AR-) within the breast might contribute to an earlier development of MBC. Besides that, the presence of ER and PR in carcinoma cells is considered to provide a growth advantage as shown by the positive association between the phenotype (ER+/PR+) and high proliferative activity. These results add information for a better understanding of hormonal control of MBC growth and development.  相似文献   

10.
Androgen plays a critical role in regulating the growth and differentiation of normal prostate epithelia, as well as the initial growth of prostate cancer cells. Nevertheless, prostate carcinomas eventually become androgen-unresponsive, and the cancer is refractory to hormonal therapy. To gain insight into the mechanism involved in this hormone-refractory phenomenon, we have examined the potential role of the androgen receptor (AR) in that process. We have investigated the expression of AR and two prostate-specific androgen-responsive antigens, prostatic acid phosphatase (PAcP) and prostate-specific antigen (PSA), for the functional activity of AR in LNCaP and PC-3 human prostate carcinoma cells. Our results are as follows. (i) Clone 33 LNCaP cells express AR, PAcP, and PSA, and cell growth is stimulated by 5alpha-dihydrotestosterone (DHT). Stimulation of cell growth correlates with decreased cellular PAcP activity. (ii) In clone 81 LNCaP cells, the expression of PAcP decreases with a concurrent decrease in the degree of androgen stimulation of cell growth, whereas the expression of PSA mRNA level is up-regulated by DHT, as in clone 33 cells. Conversely, in PAcP cDNA-transfected clone 81 cells, an additional expression of cellular PAcP correlates with an increased stimulation by androgen, higher than the corresponding control cells. (iii) PC-3 cells express a low level of functional AR with no detectable PAcP or PSA, and the growth of PC-3 cells is not affected by DHT treatment. Nevertheless, in two PAcP cDNA-transfected PC-3 sublines, the expression of exogenous cellular PAcP correlates with androgen stimulation. This androgen stimulation of cell growth concurs with an increased tyrosine phosphorylation of a phosphoprotein of 185 kDa. In summary, the data indicate that the expression of AR alone is not sufficient for androgen stimulation of cell growth. Furthermore, in AR-expressing prostate cancer cells, the expression of cellular PAcP correlates with androgen stimulation of cell proliferation.  相似文献   

11.
Growth/differentiation factor-5 (GDF-5) is a new member of the transforming growth factor-beta (TGF-beta) superfamily of multifunctional peptide growth factors that appear to mediate many key events in cell growth and development. The effects of GDF-5 and other growth factors (epidermal growth factor, EGF; TGF-beta 1) on the proliferation of human keratinocytes and fibroblasts compared with desoximetasone and calcipotriol have been investigated. The proliferation rate was determined by a hemocytometer, MTT assay and the incorporation of [3H]-thymidine. Moreover, cell cycle analyses were performed and the influence on interleukin-1 alpha (IL-1 alpha) production in keratinocytes was measured by enzyme-linked immunosorbent assay (ELISA) because of its pronounced proinflammatory effect. In keratinocytes, GDF-5 stimulated cell proliferation to a minor extent. The drug already proved to be effective at very low concentrations (0.1 ng/ml). Growth stimulatory effects with EGF have been observed only in keratinocyte basal medium (KBM), but not in keratinocyte growth medium (KGM). TGF-beta 1 markedly inhibited the proliferation of keratinocytes at concentrations > 1 ng/ml. Calcipotriol and desoximetasone also showed a dose-dependent cell growth inhibition in epidermal cell cultures. IL-1 alpha synthesis was greatly suppressed by calcipotriol 10(-8)-10(-6) M. EGF at 10 ng/ml, in contrast, strongly stimulated IL-1 alpha production. Neither GDF-5 nor TGF-beta 1 had a significant effect on IL-1 alpha production in keratinocyte monolayer cultures. In fibroblasts, GDF-5 induced very weak antiproliferative effects. Calcipotriol and desoximetasone also inhibited cell growth in fibroblast cultures whereas proliferation and DNA synthesis were strongly stimulated by 1 ng/ml EGF. There was, however, a contradiction between TGF-beta 1 results on fibroblasts. Whereas TGF-beta 1 increased proliferation in cell number determination and in the thymidine incorporation assay, MTT assays showed slight antiproliferative effects. Due to these controversial results, in addition cell cycle analysis was employed. TGF-beta 1 led to an increased S phase, which indicates a stimulation of cell division. The different results obtained with the MTT test suggest that TGF-beta 1 may stimulate cell division of fibroblasts not only by increasing the S phase, but also by shortening the G1 phase of the cell cycle.  相似文献   

12.
We investigated the potential role of transforming growth factor-beta (TGF-beta) on spontaneous and cytokine-induced proliferation of B-cell chronic lymphocytic leukaemia (B-CLL) cells in vitro. Purified B lymphocytes from 21 B-CLL patients were cultured for 5 d in the presence of medium alone, IL-2 and/or IL-10, in the presence or absence of TGF-beta, and proliferation was measured by 3H-thymidine incorporation. TGF-beta inhibited B-cell proliferation in the majority of patients (15/21) but no inhibition was detected in 6/21 patients whatever the type of stimulant used. Addition of neutralizing antibodies to TGF-beta increased spontaneous and cytokine-induced proliferation; this effect was dose dependent and specific because addition of an irrelevant chicken IgG had no effect on B-CLL proliferation. In resistant patients, neutralizing antibodies to TGF-beta did not increase the proliferation. The expression of TGF-beta receptors on B-CLL cells was significantly lower than the one observed on normal CD5+ B lymphocytes for which the sensitivity to TGF-beta inhibition was more marked than in CLL. In addition, we found a strong correlation between the response of leukaemic B cells to TGF-beta inhibitory action and the expression of TGF-beta receptors on these cells. In summary, TGF-beta appears to function in CLL as a negative regulator of B lymphocytes but loss of responsiveness to this factor accompanied by a decrease of TGF-beta receptor expression, might provide a selective advantage to B-CLL lymphocytes.  相似文献   

13.
We have studied the role of autocrine transforming growth factor-beta (TGF-beta) signaling on antiestrogen-mediated growth inhibition of hormone-dependent T47D and MCF-7 human breast carcinoma cells. Tamoxifen treatment increased the secretion of TGF-beta activity into serum-free cell medium and the cellular content of affinity cross-linked type I and III TGF-beta receptors in both cell lines. Anti-pan-TGF-beta antibodies did not block anti-estrogen-induced recruitment in G1 and inhibition of anchorage-dependent and -independent growth of both cell lines. Early passage MCF-7 cells, which exhibit detectable type II TGF-beta receptors at the cell surface and exquisite sensitivity to exogenous TGF-beta1, were transfected with a tetracycline-controllable dominant-negative TGF-betaRII (DeltaRII) construct. Although the TGF-beta1 response was blocked by removal of tetracycline in MCF-7/DeltaRII cells, tamoxifen-mediated suppression of Rb phosphorylation, recruitment in G1, and inhibition of cell proliferation were identical in the presence and absence of tetracycline. TGF-beta1 treatment up-regulated the Cdk inhibitor p21 and induced its association with Cdk2 in MCF-7 cells; these responses were blocked by the DeltaRII transgene product. In MCF-7 cells with a functional TGF-beta signaling pathway, tamoxifen did not up-regulate p21 nor did it induce association of p21 with Cdk2, suggesting alternative mechanisms for antiestrogen-mediated cytostasis. Finally, transfection of late-passage, TGF-beta1 unresponsive MCF-7 cells with high levels of TGF-betaRII restored TGF-beta1-induced growth inhibition but did not enhance tamoxifen response in culture. Taken together these data strongly argue against any role for TGF-beta signaling on tamoxifen-mediated growth inhibition of hormone-dependent breast cancer cells.  相似文献   

14.
The molecular mechanism of androgen-independent growth of prostate cancer after androgen ablation was explored in LNCaP cells. An androgen-dependent clonal subline of the LNCaP human prostate carcinoma cell line, LNCaP 104-S, progressed to a slow growing stage (104-R1) and then to a faster growing stage (104-R2) during more than 2 yr of continuous culture in the absence of androgen. Androgen-induced proliferation of 104-S cells is inhibited by the antiandrogen Casodex, while proliferation of 104-R1 and 104-R2 cells is unaffected by Casodex. This indicates that proliferation of 104-R1 and 104-R2 cells is not supported by low levels of androgen in the culture medium. Compared with LNCaP 104-S cells, both 104-R1 and 104-R2 cells express higher basal levels of androgen receptor (AR), and proliferation of these two cell lines is paradoxically repressed by androgen. After continuous passage in androgen-containing medium, 104-R1 cells reverted back to an androgen-dependent phenotype. The mechanism of androgenic repression of 104-R1 and 104-R2 sublines was further evaluated by examining the role of critical regulatory factors involved in the control of cell cycle progression. At concentrations that repressed growth, androgen transiently induced the expression of the cyclin-dependent kinase (cdk) inhibitor p21waf1/cip1 in 104-R1 cells, while expression of the cdk inhibitor p27Kip1 was persistently induced by androgen in both 104-R1 and 104-R2 cells. Induced expression of murine p27Kip1 in 104-R2 cells resulted in G1 arrest. Specific immunoprecipitates of Cdk2 but not Cdk4 from androgen-treated 104-R1 cells contained both p21waf1/cip1 and p27Kip1. This observation was confirmed by in vitro assay of histone H1 and Rb (retinoblastoma protein) phosphorylation by the proteins associated with the immune complex. Furthermore, inhibition of Cdk2 activity correlated with the accumulation of p27Kip1 and not p21waf1/cip1. From these results we conclude that androgenic repression of LNCaP 104-R1 and 104-R2 cell proliferation is due to the induction of p27Kip1, which in turn inhibits Cdk2, a factor critical for cell cycle progression and proliferation.  相似文献   

15.
Although a large proportion of primary human breast cancers express the androgen receptor, and treatment with androgens exerts beneficial effects in women with breast cancer, the role and especially the mechanism of action of androgens in breast cancer development and growth are not well understood. The potential effect of androgens on bcl-2 protooncogene expression was investigated in a human breast cancer cell line whose proliferation is known to be inhibited by androgens. The estrogen-responsive ZR-75-1 cells were grown in the presence or absence of 5alpha-dihydrotestosterone (DHT), alone or in combination with 17beta-estradiol. DHT caused a marked down-regulation of Bcl-2 protein and messenger RNA levels in both the presence and absence of 17beta-estradiol. The inhibitory effect of DHT was completely prevented by coincubation with the pure antiandrogen hydroxyflutamide. The present data indicate that androgens can down-regulate bcl-2 protooncogene levels via an androgen receptor-mediated mechanism, thus providing a novel mechanism for their known inhibitory effect on breast cancer cell growth.  相似文献   

16.
We and others have recently shown that 1alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] significantly inhibits cell proliferation and increases secretion of prostate-specific antigen (PSA) in LNCaP cells, an androgen-responsive human prostate cancer cell line. The present study was designed to investigate the possible interactions between 1,25-(OH)2D3 and androgens in the regulation of LNCaP cellular function. LNCaP cell growth was dose-dependently inhibited by 1,25-(OH)2D3 (60% inhibition at 10 nM) when cells were cultured in medium supplemented with FBS (FBS medium). 1,25-(OH)2D3-treated cells showed a 5-fold increase in PSA secretion, similar to the increase seen in dihydrotestosterone (DHT)-treated cells. In combination, 1,25-(OH)2D3 and DHT synergistically enhanced PSA secretion 22-fold. This synergistic effect was even greater when cells were cultured in medium supplemented with charcoal-stripped serum (CSS medium), where endogenous steroids are substantially depleted. Under these conditions, 1,25-(OH)2D3 and DHT together stimulated PSA secretion up to 50-fold over the untreated control. Radioligand binding assays and Western blot analyses showed that the androgen receptor (AR) content was increased significantly by 1,25-(OH)2D3 at 48 h. Furthermore, the steady-state mRNA level of AR was up-regulated approximately 2-fold by 1,25-(OH)2D3 at 24 h. When cells were grown in CSS medium, 1,25-(OH)2D3 alone no longer inhibited cell growth or induced PSA secretion. Titration experiments revealed that the addition of DHT at 1 nM to the medium restored the antiproliferative activity of 1,25-(OH)2D3. Conversely, an antiandrogen, Casodex, completely blocked 1,25-(OH)2D3 antiproliferative and PSA stimulation activities when cells were cultured in FBS medium. In conclusion, these results demonstrate that the antiproliferative and PSA induction activities of 1,25-(OH)2D3 in LNCaP cells are dependent upon androgen action and that AR up-regulation by 1,25-(OH)2D3 likely contributes to the synergistic actions of 1,25-(OH)2D3 and DHT in these cells.  相似文献   

17.
Transforming growth factor-beta1 (TGF-beta1) inhibits theca-interstitial cell (TIC) androgen biosynthesis while enhancing progesterone production without altering P45017 alpha protein content. The purpose of the present study was to define the mechanism of TGF-beta 1 inhibition of ovarian androgen production by determining the effects of TGF-beta 1 on steroidogenic enzyme messenger RNA (mRNA) expression and 17 alpha-hydroxylase activity in TIC in vitro. TIC isolated from hypophysectomized immature rat ovaries by Percoll gradient centrifugation were cultured with and without LH and TGF-beta 1 up to 6 days. At various times, cytoplasmic mRNA was extracted from the TIC, and P450scc, 3 beta-HSD and P450(17 alpha) mRNA were measured by specific assays, using RT-PCR. Treatment with TGF-beta 1 alone (0.1-100 ng/ml) had no effect on mRNA expression at 2 days but increased P450scc and 3 beta-HDS mRNA at 4 days. TGF-beta did not alter the LH stimulation of P450scc and 3 beta-HSD mRNA up to 6 days but caused a modest (2.5-fold) increase in P450 (17 alpha) mRNA at 2 days. Specificity studies with inhibin-A (30 ng/ml), activin-A (100 ng/ml), and MIS (300 ng/ml) demonstrated that the effects of TGF-beta 1 were unique within this family of peptides. We next examined the effect of TGF-beta 1 on 17 alpha-hydroxylase activity. Kinetic analysis revealed that the 17 alpha-hydroxylase enzyme has an apparent Michaelis-Menten constant of 3.42 mumol/liter and maximum velocity of 0.23 pmol/min x mg protein. TGF-beta 1 inhibited 17 alpha-hydroxylase activity by a noncompetitive mechanism with an apparent inhibin constant (Ki) of 46.4 pM. The results of our studies demonstrate that TGF-beta 1 directly inhibits TIC androgen production by a noncompetitive mechanism. This novel mechanism may be important in preventing excessive androgen production in developing ovarian follicles without preventing differentiation of the TIC.  相似文献   

18.
Our previous findings in female rats suggest that the potent effects of sex steroids on mood and mental state may be mediated, in part, by the effect of estrogen on the 5-hydroxytryptamine2A receptor (5-HT2AR) in brain. The aim of the present study was to determine the effect of acute (approximately 32h) sex steroid manipulation on central 5-HT2AR in the adult male Wistar rat. Castration (under halothane anesthesia) decreased while testosterone or estrogen, but not 5alpha-dihydrotestosterone (5alpha-DHT), increased significantly the 5-HT2AR mRNA content in dorsal raphe nucleus and the density of 5-HT2AR binding sites in frontal, cingulate and primary olfactory cortex and nucleus accumbens. The lack of effect of 5alpha-DHT, a potent androgen which cannot be converted to estrogen, suggests that the action of testosterone depends upon its conversion to estrogen by aromatase. This may also explain why estrogen, but not testosterone or 5alpha-DHT, increased the density of 5-HT2AR binding sites in the caudate-putamen, a brain region where aromatase is scarce. These findings are discussed in relation to the possible role of the 5-HT2AR in depression, schizophrenia and Alzheimer's Disease.  相似文献   

19.
Peptide growth factors play a role in the maintenance of normal prostatic growth and differentiation (Fig. 2). It seems likely that the androgen sensitivity of human prostate is mediated by the production of peptide growth factors from stromal cells which act as the direct intermediate of androgen action on epithelial cells. TGF-beta 1 inhibition of epithelial cells is opposed by the stimulatory action of EGF, IGF and FGFs to maintain an equilibrium of epithelial cell numbers. The indirect mitogenic action of androgens appear to act by down-regulation of TGF-beta 1 and possibly EGF receptors. There is also interaction with the effects of IGF-II, produced by prostatic stromal cells and acting on epithelial cells to increase proliferation. The growth of normal prostatic fibroblasts is under the control of bFGF and TGF-beta 1. However, although our understanding of the actions of these growth factors in the normal prostate has improved over the last decade, their role in the development and maintenance of prostate cancer is less clearly defined. TGF-beta 1, classically considered to be inhibitory for epithelial cells, may be up-regulated in prostatic tumours, stimulating growth. Alternatively, autocrine production of such growth factors by tumour cells may lead to loss of inhibitory effects from exogenous TGF-beta 1, a mechanism also witnessed with TGF-alpha and bFGF. The role of EGF in the development of prostate cancer is confusing because results from the use of different cell types and experimental conditions is contradictory. It may be that a switch in the production of the predominant EGFr ligand from EGF to TGF-alpha is an important feature in the development and maintenance of the malignant phenotype. The presence of TGF-alpha autocrine loops has been shown clearly in some tumour cell lines. This switch in the production of a particular ligand may also be a feature of IGFs in prostate cancer. IGF-II may be replaced by IGF-I during malignant progression, both of which are able to act via the type 1 receptor. This change in IGF expression appears to be accompanied by altered expression of the IGF-BP2, with less detectable within prostatic tissues but elevated serum levels [58]. Basic FGF is normally produced by prostatic fibroblasts but is also produced by some prostatic cancer cell lines [64]. However, as with all growth factors, the expression of the bFGF protein and its receptor is dependent on the cell line examined. The autocrine and paracrine control of normal and abnormal prostatic growth by growth factors is important in determining their role in the development and maintenance of prostate cancer. Better understanding of such mechanisms is essential for the development of novel therapeutic strategies in the control and treatment of prostate cancer.  相似文献   

20.
Transforming growth factor-beta1 is a pleiotropic cytokine involved in a variety of biological processes in both transformed and normal cells, including regulation of cellular proliferation and differentiation; its predominant action on hematopoietic cells is to inhibit cell growth. We used growth factor-dependent cell lines to assess TGF-beta1 effects on human myeloid leukemia cell growth. While four lines were completely or predominantly resistant, TGF-beta1 inhibited effectively, albeit to various extents, the growth of 12 other cell lines. This effect was dose dependent and specific, because a neutralizing anti-TGF-beta1 antibody prevented TGF-beta1-induced growth suppression. In the present system, basic fibroblast growth factor, known as an antagonist of TGF-beta1 counteracting its inhibitory effects, did not abrogate the suppressive effects of TGF-beta1. Other growth-stimulatory cytokines negated the TGF-beta1-induced inhibition in several cell lines, again to various extents. When proliferation was enhanced by growth-promoting cytokines (e.g. granulocyte-macrophage colony-stimulating factor, GM-CSF, stem cell factor, SCF, or PIXY-321), some previously TGF-beta1-sensitive cell lines acquired cellular resistance toward TGF-beta1-mediated growth suppression, whereas four other cell lines remained susceptible to TGF-beta1 growth inhibition despite possible counteraction by other cytokines. Thus, three growth response patterns to TGF-beta1 were seen: (1) constitutive resistance; (2) factor-dependent relative resistance; and (3) sensitivity to growth inhibition indifferent to counteracting cytokines. In the latter case, TGF-beta1 did not downregulate expression of one specific growth factor receptor. These studies indicate that human myeloid leukemia cells, represented here by leukemia cell lines as model systems, exhibit heterogeneous growth responses to TGF-beta1; its inhibitory effects can be modulated or completely alleviated by positive antagonistic cytokines. The availability of TGF-beta1-susceptible and -refractory cell lines allows for detailed investigations on the mechanisms of these regulatory pathways, the nature of TGF-beta1-resistance, and the possible contribution of acquired TGF-beta1-resistance to disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号