首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present algorithms for building and maintaining efficient collection trees that provide the conduit to disseminate data required for processing monitoring queries in a wireless sensor network. While prior techniques base their operation on the assumption that the sensor nodes that collect data relevant to a specified query need to include their measurements in the query result at every query epoch, in many event monitoring applications such an assumption is not valid. We introduce and formalize the notion of event monitoring queries and demonstrate that they can capture a large class of monitoring applications. We then show techniques which, using a small set of intuitive statistics, can compute collection trees that minimize important resources such as the number of messages exchanged among the nodes or the overall energy consumption. Our experiments demonstrate that our techniques can organize the data collection process while utilizing significantly lower resources than prior approaches.  相似文献   

2.
潘立强  李建中  骆吉洲 《软件学报》2010,21(4):1020-1030
由于无线传感器网络的能源有限,且在许多应用中Skyline 查询的部分结果即可满足用户需求,提出了一 种近似Skyline 查询处理算法,在满足用户查询需求的前提下最大化地节省能量.该算法仅需无线传感器网络中的部 分传感器节点回传其感知数据即可计算出Skyline 查询的一个近似结果集.由于该算法在处理查询时,每个传感器节 点只需考察自身数据信息即可决定是否回传其感知数据,而无须与其他传感器节点的感知数据进行比较,因此可以 避免大量的网内通信开销,从而节省网络能源.模拟环境下的大量实验结果表明,该算法可以根据用户的应用需求, 节能地处理传感器网络中的近似skyline 查询.  相似文献   

3.
Top-k monitoring queries are useful in many wireless sensor network applications. A query of this type continuously returns a list of k ordered nodes with the highest (or lowest) sensor readings. To process these queries, a well-known approach is to install a filter at each sensor node to avoid unnecessary transmissions of sensor readings. In this paper, we propose a new top-k monitoring method, named Distributed Adaptive Filter-based Monitoring. In this method, we first propose a new query reevaluation algorithm that works distributedly in the network to reduce the communication cost of sending probe messages. Then, we present an adaptive filter updating algorithm which is based on predicted benefits to lower down the transmission cost of sending updated filters to the sensor nodes. Experimental results on real data traces show that our proposed method performs much better than the other existing methods in terms of both network lifetime and average energy consumption.  相似文献   

4.
In this paper, a new approach has been introduced that integrates an evolutionary-based mechanism with a distributed query sensor cover algorithm for optimal query execution in self-organized wireless sensor networks (WSN). An algorithm based on an evolutionary technique is proposed, with problem-specific genetic operators to improve computing efficiency. Redundancy within a sensor network can be exploited to reduce the communication cost incurred in execution of spatial queries. Any reduction in communication cost would result in an efficient use of battery energy, which is very limited in sensors. Our objective is to self-organize the network, in response to a query, into a topology that involves an optimal subset of sensors that is sufficient to process the query subject to connectivity, coverage, energy consumption, cover size and communication overhead constraints. Query processing must incorporate energy awareness into the system by reducing the total energy consumption and hence increasing the lifetime of the sensor cover, which is beneficial for large long running queries. Experiments have been carried out on networks with different sensors Transmission radius, different query sizes, and different network configurations. Through extensive simulations, we have shown that our designed technique result in substantial energy savings in a sensor network. Compared with other techniques, the results demonstrated a significant improvement of the proposed technique in terms of energy-efficient query cover with lower communication cost and lower size.  相似文献   

5.
在无线传感器网络中对于无固定位置的事件及查询是个重要的研究课题。结合高效及最大化网络生命周期,提出了一种基于哈希函数及能量均衡的事件查询算法。在该算法中,一个传感器节点只需要关心自己通信范围内的邻居节点,不需要知道整个网络的状况,算法具有冗余数据少、查询能耗小、网络生命周期长、实现简单等特点。借助OMNET++网络模拟器进行仿真实验,与经典路由算法比较,结果表明本算法能快速高效地进行事件查询,同时最小化及均衡能量消耗,延长了网络生命周期。  相似文献   

6.
After wireless sensor network is deployed, users often submit spatial window aggregation queries to obtain statistical information of the regions of interest, such as maximum temperature, average humidity etc. Existing spatial window aggregation query processing algorithms are based on the assumption that the communication links are ideal which means there are perfect communication links within a given communication range, and none beyond. However, it is not valid in realistic sensor networks, which leads to high retransmissions of data frames. In order to address this problem, a reliable spatial window aggregation query processing algorithm called RESA is proposed in this paper. RESA only requires each node to maintain locations and residual energy of its neighbors and link qualities between them. According to the information, it divides the query area into several sub-regions, followed by collection of sensor readings in each sub-region. RESA traverses all the sub-regions within the query area to ensure the correctness of query result. Based on RESA's energy consumption formula derived, two highly efficient methods for sub-regional division are proposed to reduce packet loss rate during data communication and balance the load of nodes, hence saving energy consumption and extending lifetime. Experimental results show that in most cases RESA outperforms the existing algorithms in terms of energy consumption, quality of query results and lifetime.  相似文献   

7.
Spatial index trees constructed in wireless sensor networks are used to determine the sensors which can participate the query accurately and quickly. Most of index trees are constructed based on the parent--child node relation in network structure like routing tree, in which message sending for parent node selection will consume more energy. Due to energy being the important factor considered in wireless sensor networks, we design an energy-efficient index tree based on grid division and minimum energy merging principle in the skewness distribution of sensor nodes. Multi-region aggregation queries are carried on in our proposed index tree, which mainly focuses on region re-combination. Experimental results show that the energy consumption for multi-region aggregation queries are reduced compared to the original index tree.  相似文献   

8.
In wireless sensor networks (WSNs), energy is valuable because it is scarce. This causes their life time to be determined by their ability to use the available energy in an effective and frugal manner. In most of the earlier sensor network applications, the main requirement consisted mainly of data collection but transmitting all of the raw data out of the network may be prohibitively expensive (in terms of communication) or impossible at given data collection rates.In the last decade, the use of the database paradigm has emerged as a feasible solution to manage data in a WSN context. There are various sensor network query processors (SNQPs) (implementing in-network declarative query processing) that provide data reduction, aggregation, logging, and auditing facilities. These SNQPs view the wireless sensor network as a distributed database over which declarative query processor can be used to program a WSN application with much less effort. They allow users to pose declarative queries that provide an effective and efficient means to obtain data about the physical environment, as users would not need to be concerned with how sensors are to acquire the data, or how nodes transform and/or transmit the data.This paper surveys novel approaches of handling query processing by the current SNQP literature, the expressiveness of their query language, the support provided by their compiler/optimizer to generate efficient query plans and the kind of queries supported. We introduce the challenges and opportunities of research in the field of in-network sensor network query processing as well as illustrate the current status of research and future research scopes in this field.  相似文献   

9.
We investigate the problem of processing historical queries on a sensor network. Since data is considered to have been already collected at the sensor nodes, the main issue is exploring the spatial component of the query in order to minimize its cost represented by the energy consumption. We assume queries can be issued at any network node, i.e., there is no central base station and all nodes have only local knowledge of the network. On the one hand, a globally optimum query processing plan is desirable but its construction is not possible due to the lack of global knowledge of the network. On the other hand, while a simple network flooding is feasible, it is not a practical choice from a cost perspective. To address this problem we propose a two-phase query processing strategy, where in the first phase a path from the query originator to the query region is found and in the second phase the query is processed within the query region itself. This strategy is supported by analytical models that are used to dynamically select the best processing strategy depending on the query specifics. Our extensive analytical and experimental results show that our analytical models are accurate and that the two-phase strategy is better suited for small to medium sized queries, being up to 10 times more cost effective than a typical network flooding. In addition, the dynamic selection of a query processing technique proved itself capable of always delivering at least as good performance as the most energy efficient strategy for all query sizes. Research supported in part by NSERC Canada.  相似文献   

10.
对传感器网络中一类新查询--节点个数约束查询,提出能量有效的查询处理算法.算法主要由查询下发和结果回收两部分构成.查询下发算法首先根据节点个数约束查询的特点提出相关节点选择以及基于Steiner树的查询下发算法.然后对该下发算法以及一种基于洪泛的能量有效查询下发算法的能量消耗进行分析,并对比两种算法的能量消耗从中选择适当的下发算法.结果回收算法提出直接和间接两种结果回收方式,并给出两种方式在进行结果回收时能够节省能量的条件.仿真实验表明,提出的能量有效节点个数约束查询处理算法能够在满足用户查询精度的同时,使其能量消耗低于其他查询处理算法.  相似文献   

11.
为了使传感器网络在进行数据查询时降低能耗和提高网络生命期,引入了一种分布式查询处理机制。这种机制是先将查询分发到网络后再进行优化,这种方法更具有针对性,优化效果也更明显。分簇路由协议与分布式查询有着天然的结合点。每个簇头相当于传统数据库中的一个索引,负责查询的分析、优化和数据融合。簇头根据本区域的节点分布和数据特性可以自主地选择区域内结构而不受其他区域的影响,这样就可以把每个区域看成一个自治系统,而整个传感器网络就是多个自治系统的集合。结果表明:设计查询处理机制时考虑这些因素可以降低能耗和提高网络生命期。  相似文献   

12.
Jun-Ki Min 《Information Sciences》2011,181(16):3443-3458
The tiny and smart sensors enable applications which access a network of hundreds or thousands of sensors. In many applications, joins are used frequently to find relationships of readings of different sensors such as the correlation of sensor readings in distinct regions.In this paper, we present a cost based in-network join strategy called INJECT. Since the optimal join plan is determined according to various conditions such as data distributions and predicates of joins, it wastes the energy of sensors to use a fixed join plan blindly. Based on the analysis on how join queries can be handled in sensor networks, we devise several join plans. In particular, since the data transmission dominates the energy consumption of a sensor, we devise cost models each of which reflects the transmission cost of a join plan. Experimental results confirm that INJECT chooses the optimal or near optimal plan under various conditions.  相似文献   

13.
Top-k query in a wireless sensor network is to find the k sensor nodes with the highest sensing values. To evaluate the top-k query in such an energy-constrained network poses great challenges, due to the unique characteristics imposed on its sensors. Existing solutions for top-k query in the literature mainly focused on energy efficiency but little attention has been paid to the query response time and its effect on the network lifetime. In this paper we address the query response time and its effect on the network lifetime through the study of the top-k query problem in sensor networks with the response time constraint. We aim at finding an energy-efficient routing tree and evaluating top-k queries on the tree such that the network lifetime is significantly prolonged, provided that the query response time constraint is met too. To do so, we first present a cost model of energy consumption for answering top-k queries and introduce the query response time definition. We then propose a novel joint query optimization framework, which consists of finding a routing tree in the network and devising a filter-based evaluation algorithm for top-k query evaluation on the tree. We finally conduct extensive experiments by simulation to evaluate the performance of the proposed algorithms, in terms of the total energy consumption, the maximum energy consumption among nodes, the query response time, and the network lifetime. The experimental results showed that there is a non-trivial tradeoff between the query response time and the network lifetime, and the joint query optimization framework can prolong the network lifetime significantly under a specified query response time constraint.  相似文献   

14.
The idea of allowing query users to relax their correctness requirements in order to improve performance of a data stream management system (e.g., location-based services and sensor networks) has been recently studied. By exploiting the maximum error (or tolerance) allowed in query answers, algorithms for reducing the use of system resources have been developed. In most of these works, however, query tolerance is expressed as a numerical value, which may be difficult to specify. We observe that in many situations, users may not be concerned with the actual value of an answer, but rather which object satisfies a query (e.g., "who is my nearest neighbor?”). In particular, an entity-based query returns only the names of objects that satisfy the query. For these queries, it is possible to specify a tolerance that is "nonvalue-based.” In this paper, we study fraction-based tolerance, a type of nonvalue-based tolerance, where a user specifies the maximum fractions of a query answer that can be false positives and false negatives. We develop fraction-based tolerance for two major classes of entity-based queries: 1) nonrank-based query (e.g., range queries) and 2) rank-based query (e.g., k-nearest-neighbor queries). These definitions provide users with an alternative to specify the maximum tolerance allowed in their answers. We further investigate how these definitions can be exploited in a distributed stream environment. We design adaptive filter algorithms that allow updates be dropped conditionally at the data stream sources without affecting the overall query correctness. Extensive experimental results show that our protocols reduce the use of network and energy resources significantly.  相似文献   

15.
Wireless sensor networks (WSN) is a key enabling technique for achieving the vision of the Internet of Things. In many applications of WSN such as environmental monitoring and vehicle tracking, they may require to launch spatial queries for collecting and gathering sensory data for achieving certain goals. One such query is the \(K\) nearest neighbor (KNN) query, which aims to collect sensory data from \(k\) sensor nodes nearest to a certain query location. Techniques, namely the itinerary-based KNN query algorithms, are recently developed for facilitating KNN queries. Generally, these techniques propagate queries and collect data along a predetermined itinerary. However, query accuracy and boundary expansion are two challenges that are not well addressed. To mitigate these issues, in this paper, we propose a novel KNN query algorithm based on grid division routing in the setting of skewness distribution, where the itinerary is formed based on the connectivity of adjacent grid cells centers. This technique can achieve better query accuracy and cause less energy consumption by executing the query concurrently in subregions. Besides, the void region problem is well addressed based on the proximity of neighbor grid cells. Experiment result shows that our technique performs better in several aspects including query accuracy, data redundancy, and energy efficiency.  相似文献   

16.
唐伟  郭伟 《计算机应用研究》2009,26(8):3082-3085
将节点功率控制与数据聚合有机结合,为进一步降低网络能耗提供了可能,但是也给路由算法的设计带来了新的挑战。为此,针对WSNs中结合数据聚合的节能数据传递方式进行了研究,提出了一种新的最大化网络生命期的路由算法。该算法采用模拟退火算法最优化数据聚合点的选择,均衡节点能耗,最大化网络生命期。仿真结果表明该算法性能明显优于现有算法,达到了提高网络生命期的目的。  相似文献   

17.
潘立强  李建中  骆吉洲 《软件学报》2010,21(5):1020-1030
由于无线传感器网络的能源有限,且在许多应用中Skyline查询的部分结果即可满足用户需求,提出了一种近似Skyline查询处理算法,在满足用户查询需求的前提下最大化地节省能量.该算法仅需无线传感器网络中的部分传感器节点回传其感知数据即可计算出Skyline查询的一个近似结果集.由于该算法在处理查询时,每个传感器节点只需考察自身数据信息即可决定是否回传其感知数据,而无须与其他传感器节点的感知数据进行比较,因此可以避免大量的网内通信开销,从而节省网络能源.模拟环境下的大量实验结果表明,该算法可以根据用户的应用需求,节能地处理传感器网络中的近似skyline查询.  相似文献   

18.
A nearest neighbor (NN) query, which returns the most similar object to a user-specified query object, plays an important role in a wide range of applications and hence has received considerable attention. In many such applications, e.g., sensor data collection and location-based services, objects are inherently uncertain. Furthermore, due to the ever increasing generation of massive datasets, the importance of distributed databases, which deal with such data objects, has been growing. One emerging challenge is to efficiently process probabilistic NN queries over distributed uncertain databases. The straightforward approach, that each local site forwards its own database to the central server, is communication-expensive, so we have to minimize communication cost for the NN object retrieval. In this paper, we focus on two important queries, namely top-k probable NN queries and probabilistic star queries, and propose efficient algorithms to process them over distributed uncertain databases. Extensive experiments on both real and synthetic data have demonstrated that our algorithms significantly reduce communication cost.  相似文献   

19.
The in–network aggregation paradigm in sensor networks provides a versatile approach for evaluating aggregate queries. Traditional approaches need a separate aggregate to be computed and communicated for each query and hence do not scale well with the number of queries. Since approximate query results are sufficient for many applications, we use an alternate approach based on summary data–structures. We consider two kinds of aggregate queries: location range queries that compute the sum of values reported by sensors in a given location range, and value range queries that compute the number of sensors that report values in a given range. We construct summary data–structures called linear sketches, over the sensor data using in–network aggregation and use them to answer aggregate queries in an approximate manner at the base–station. There is a trade–off between accuracy of the query results and lifetime of the sensor network that can be exploited to achieve increased lifetimes for a small loss in accuracy. Most commonly occurring sets of range queries are highly correlated and display rich algebraic structure. Our approach takes full advantage of this by constructing linear sketches that depend on queries. Experimental results show that linear sketching achieves significant improvements in lifetime of sensor networks for only a small loss in accuracy of the queries. Further, our approach achieves more accurate query results than the other classical techniques using Discrete Fourier Transform and Discrete Wavelet Transform. This work was supported in part by NASA under Cooperative Agreement NCC5–315.  相似文献   

20.
Top-k Monitoring in Wireless Sensor Networks   总被引:1,自引:0,他引:1  
Top-k monitoring is important to many wireless sensor applications. This paper exploits the semantics of top-k query and proposes an energy-efficient monitoring approach called FILA. The basic idea is to install a filter at each sensor node to suppress unnecessary sensor updates. Filter setting and query reevaluation upon updates are two fundamental issues to the correctness and efficiency of the FILA approach. We develop a query reevaluation algorithm that is capable of handling concurrent sensor updates. In particular, we present optimization techniques to reduce the probing cost. We design a skewed filter setting scheme, which aims to balance energy consumption and prolong network lifetime. Moreover, two filter update strategies, namely, eager and lazy, are proposed to favor different application scenarios. We also extend the algorithms to several variants of top-k query, that is, order-insensitive, approximate, and value monitoring. The performance of the proposed FILA approach is extensively evaluated using real data traces. The results show that FILA substantially outperforms the existing TAG-based approach and range caching approach in terms of both network lifetime and energy consumption under various network configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号