首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eighty-four Holstein cows were utilized to evaluate effects of dry period (60 d vs. 30 d), with or without estradiol cypionate (ECP) injections to accelerate mammary involution, on prepartum and postpartum dry matter intake (DMI), body weight (BW), body condition score (BCS), and subsequent milk yield (MY). Treatments were arranged in a 3 x 2 x 2 factorial design that included dry period (30 d dry, 30 d dry + ECP, and 60 d dry), prepartum and postpartum bovine somatotropin (bST; 10.2 mg/d), and prepartum anionic or cationic diets. To accelerate mammary involution, ECP (15 mg) was injected intramuscularly at dry-off. No interaction of bST or prepartum diet with dry period length was detected on BW, BCS, or MY. No significant effects of dry period length on prepartum DMI, BW, or BCS were detected. Cows with shorter dry periods maintained postpartum BCS better and tended to have greater DMI immediately postpartum. Mean daily yields of milk for dry period groups did not differ during overall lactation period (1 to 21 wk). Injection of ECP at the onset of the 30-d dry period did not affect MY. No significant differences due to dry period length were detected for milk, 3.5% FCM, or SCM yields during first 10 wk of lactation. Data indicated that a short dry period protocol can be used as a management tool with no loss in the subsequent milk production of dairy cows.  相似文献   

2.
Holstein cows (n = 72) entering second or later lactation were used to determine whether productive performance and dry matter intake (DMI) are affected by carbohydrate source in the prepartum diet and chromium-L-methionine (Cr-Met) supplementation throughout the periparturient period. Cows were fed either a TMR with the concentrate portion based on starch-based cereals [high nonfiber carbohydrate (NFC); 1.59 Mcal/kg of net energy for lactation (NEL), 14.4% crude protein (CP), 40.3% NFC] or a TMR with the concentrate portion based on nonforage fiber sources (low NFC; 1.54 Mcal/kg NEL, 14.5% CP, 33.6% NFC) from 21 d before expected parturition until parturition. After parturition all cows were fed a lactation TMR (1.74 Mcal/kg NEL, 16.5% CP, 40.0% NFC). The Cr-Met was supplemented once daily via gelatin capsule at dosages of 0, 0.03, or 0.06 mg of Cr/kg of metabolic body weight. Thus, treatments were in a 2 (carbohydrate source) x 3 (Cr-Met) factorial arrangement. Neither prepartum nor postpartum DMI was affected by prepartum dietary carbohydrate source. Administering increasing amounts of Cr-Met linearly increased milk yield and, subsequently, postpartum DMI. Prepartum carbohydrate source did not affect postpartum milk yield; however, cows fed the low NFC diet tended to yield milk with a lower content of total solids. These data indicate that prepartum carbohydrate source has little influence on performance during the immediate peripartal period, and that increases in milk yield for cows supplemented with Cr-Met are independent of prepartum dietary carbohydrate source.  相似文献   

3.
Forty cows and twenty heifers were used to study the effects of dietary energy density during late gestation and early lactation on lactation performance and ruminal parameters. A 2 x 2 factorial arrangement of treatments was used. During prepartum (-28 d to calving), animals were fed a low energy density diet [DL; 1.58 Mcal of net energy for lactation (NE(L))/kg, 40% neutral detergent fiber (NDF) and 38% nonfiber carbohydrate (NFC)] or a high energy diet (DH; 1.70 Mcal NE(L)/kg, 32% NDF and 44% NFC). After calving, half of the cows from each prepartum treatment group were assigned to a low energy density diet (L; 1.57 Mcal NE(L)/kg, 30% NDF and 41% NFC) or a high energy density diet (H; 1.63 Mcal NE(L)/kg, 25% NDF and 47% NFC) until d 20 postpartum. After d 20, all cows were fed H until d 70. Animals fed DH had 19.8% greater dry matter intake (DMI; % of body weight) and 21.5% greater energy intake than animals fed DL prepartum and the response was greater for cows compared to heifers. Animals fed DH had lower ruminal pH compared to animals fed DL, but no major changes in volatile fatty acid concentrations were observed. Effects of dietary energy density during prepartum on postpartum production responses were dependent on parity. Primiparous cows fed DL had higher 3.5% fat-corrected milk yield and milk fat production and percentage during the first 10 wk of lactation than those fed DH. Prepartum diet did not affect lactation performance of multiparous cows. Cows fed H had higher DMI and energy intake for the first 20 d of lactation compared to cows fed L. Diets did not affect DMI after the third wk of lactation. Milk production increased faster for cows fed H compared to cows fed L. Animals fed DL-L sequence of treatments tended to have the lowest energy intake during the first 10 wk of lactation. Prepartum treatments did not affect ruminal fermentation characteristics postpartum. Cows fed H had lower ruminal pH and higher propionate concentrations than cows fed L. No prepartum x postpartum interactions were observed for ruminal fermentation parameters. The effects of DH on prepartum DMI did not carry over to the postpartum period or influence early postpartum production. Increasing concentrate content of the diet immediately postpartum instead of delaying the increase until d 21 postpartum is associated with a higher rate of increase.in milk production and higher DMI.  相似文献   

4.
An experiment was conducted to determine the effect of plane of energy intake prepartum on postpartum performance. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A moderate energy diet [1.63 Mcal of net energy for lactation (NEL)/kg; 15% crude protein (CP)] was fed for either ad libitum intake (OVR) or restricted intake (RES) to supply 150 or 80% of National Research Council (2001) energy requirement, respectively, for dry cows in late gestation. To limit energy intake to 100% of NRC requirement at ad libitum dry matter intake (DMI), chopped wheat straw was included as 31.8% of dry matter (DM) in a control diet (CON; 1.21 Mcal of NEL/kg of DM; 14% CP). Multiparous and primiparous cows assigned to OVR gained body condition during the dry period [initial body condition score (BCS) = 3.3], but were not overconditioned by parturition (BCS = 3.5). Multiparous cows in the OVR group lost more BCS postpartum than multiparous RES or CON cows. Primiparous cows lost similar amounts of BCS among dietary treatment groups postpartum. Addition of chopped wheat straw to CON diets prevented a large decrease in DMI prepartum in both primiparous and multiparous cows. During the first 3 wk postpartum, DMI as a percentage of BW was lower for multiparous OVR cows than for multiparous RES cows. Prepartum diet effects did not carry over through the entire 8-wk lactation period. Because of greater mobilization of body stores, OVR cows had greater milk fat percentage and greater 3.5% fat-corrected milk yield during the first 3 wk postpartum. Multiparous cows assigned to OVR experienced a 55% decrease in energy balance and primiparous cows a 40% decrease in energy balance during the last 3 wk before parturition, compared with CON or RES cows that had little change. Multiparous cows fed OVR had a greater contribution of energy from body energy reserves to milk energy output than either CON or RES cows. Overfeeding energy prepartum resulted in large changes in periparturient energy balance. Even in the absence of overconditioning, a large change in DMI and energy balance prepartum influenced postpartum DMI and BCS loss, especially for multiparous cows. Chopped wheat straw was effective at controlling energy intake prepartum, although primiparous cows did not achieve predicted DMI. Even so, controlling or restricting energy intake in primiparous cows was not detrimental to lactational performance over the first 8 wk of lactation.  相似文献   

5.
Our objectives were to evaluate the effects of prepartum monensin supplementation and dry-period nutritional strategy on the postpartum productive performance of cows fed monensin during lactation. A total of 102 Holstein cows were enrolled in the experiment (32 primiparous and 70 multiparous). The study was a completely randomized design, with randomization restricted to balance for parity, body condition score, and expected calving date. A 2 × 2 factorial arrangement of prepartum treatments was used; the variables of interest were prepartum feeding strategy [controlled-energy diet throughout the dry period (CE) vs. controlled-energy diet from dry-off to 22 d before expected parturition, followed by a moderate-energy close-up diet from d 21 before expected parturition through parturition (CU)] and prepartum monensin supplementation [0 g/t (control, CON) or 24.2 g/t (MON); Rumensin; Elanco Animal Health, Greenfield, IN]. Lactation diets before and after the dry period contained monensin at 15.4 g/t. During the close-up period, cows fed CU had greater DM and NEL intakes than cows fed CE. Calf BW at birth tended to be greater for cows fed CU than for those fed CE but was not affected by MON supplementation. Diet did not affect calving difficulty score, but cows supplemented with MON had an increased calving difficulty score. We found a tendency for a MON × parity interaction for colostral IgG concentration, such that multiparous MON cows tended to have lower IgG concentration than CON cows, but colostral IgG concentration for primiparous MON and CON cows did not differ. Postpartum milk yield did not differ between diets but tended to be greater for cows supplemented with MON. Milk fat and lactose content were greater for cows fed CU than for those fed CE, and lactose content and yield were increased for cows supplemented with MON. Solids-corrected and fat-corrected milk yields were increased by MON supplementation, but were not affected by diet. Overall means for postpartum DMI did not differ by diet or MON supplementation. The CU diet decreased the concentration of nonesterified fatty acids during the close-up period but increased it postpartum. Neither diet nor monensin affected β-hydroxybutyrate or liver composition. Overall, postpartum productive performance differed little between prepartum dietary strategies, but cows fed MON had greater energy-corrected milk production. In herds fed monensin during lactation, monensin should also be fed during the dry period.  相似文献   

6.
Eighty-five multiparous Holstein cows were used in a completely randomized design with restrictions to evaluate the effects of prepartum carbohydrate (CHO) source and monensin on periparturient dry matter intake (DMI), blood parameters, and lactation performance of dairy cows. Dietary treatments were arranged in a 2 × 2 factorial arrangement with a conventional (CONV) dry cow diet and a nonforage fiber source (NFFS) dry cow diet not supplemented (−) or supplemented (+) with 330 mg/cow per d of monensin as a top dressing. The CONV diet contained 70% forage and the NFFS diet contained nonforage fiber sources such that 28% of the forage was replaced with cottonseed hulls and soyhulls. The experimental diets (CONV and NFFS) were fed throughout the entire dry period (for 60 d before parturition). Monensin was top dressed once daily starting 28 d (27 ± 1.8 SD) before the expected calving date and continued until parturition. After parturition, all cows received the same lactating cow diet. During the last 28 d of gestation, cows receiving the NFFS diets prepartum had greater DMI (15.8 vs. 11.9 kg/d), DMI as a percentage of body weight (2.1 vs. 1.6% of body weight), plasma glucose (67.4 vs. 64.6 mg/dL), and serum insulin concentrations (0.59 vs. 0.45 ng/mL), and lower plasma nonesterified fatty acid concentrations (185 vs. 245 μEq/L) compared with cows receiving the CONV diets prepartum. Average milk production or composition during the first 56 d of lactation was not significantly affected by prepartum source of CHO, monensin, or their combination; however, there was a trend for the prepartum CHO source to affect milk production over time. Supplementation of monensin as a top dressing for 28 d prepartum had no effect on periparturient measurements. The prepartum diet did not affect postpartum DMI, blood glucose, nonesterified fatty acids, insulin concentrations, or liver triglyceride content. Results from this research demonstrated that partly replacing conventional dietary carbohydrate sources with NFFS, cottonseed hulls and soyhulls, in the dry cow diet improved or maintained the prepartum DMI and therefore enhanced the prepartum metabolic status, as indicated by key blood metabolite concentrations. This greater prepartum DMI may potentially increase milk production during early lactation.  相似文献   

7.
The objectives of this experiment were to determine whether low doses of bovine somatotropin (bST) during the transition period and early lactation period improved dry matter intake (DMI), body weight (BW), or body condition score (BCS); provoked positive changes in concentrations of somatotropin, insulin, insulin-like growth factor-I (IGF-I), glucose, nonesterified fatty acids, and Ca; or improved milk yield (MY) response without obvious adverse effects on health status. Eighty-four multiparous Holstein cows completed treatments arranged in a 2 x 3 x 2 factorial design that included prepartum and postpartum bST, dry period (30 d dry, 30 d dry + estradiol cypionate, and 60 d dry), and prepartum anionic or cationic diets. Biweekly injections of bST began at 21 +/- 3 d before expected calving date through 42 +/- 2 d postpartum (control = 0 vs. bST = 10.2 mg of bST/d; POSILAC). At 56 +/- 2 d in milk, all cows were injected with a full dose of bST (500 mg of bST/14 d; POSILAC). During the prepartum period and during the first 28 d postpartum, no differences in mean BW, BCS, or DMI were detected between the bST treatment group and the control group. During the first 10 wk of lactation, cows in the bST treatment group had greater mean MY and 3.5% fat-corrected milk yield and lower SCC than did cows in the control group. When cows received a full dose of bST, an increase in milk production through wk 21 was maintained better by cows in the bST group. Mean concentrations of somatotropin, IGF-I, and insulin differed during the overall prepartum period (d -21 to -1). During the postpartum period (d 1 to 28), cows in the bST group had greater mean concentrations of somatotropin and IGF-I in plasma. Concentrations of Ca around calving did not differ because of bST treatment. Results suggest that changes in concentrations of blood measures provoked by injections of bST during the transition period and early lactation period resulted in improved metabolic status and production of the cows without apparent positive or negative effects on calving or health.  相似文献   

8.
Effects of supplementing direct-fed microbial agents (DFM) to dairy cows during the transition period were evaluated. Forty-four Holstein cows were fed close-up and lactating diets that did or did not contain 2 g of DFM/cow per d. Direct-fed microbial supplementation contained approximately 5 × 109 cfu of yeast and 5 × 109 cfu of bacteria (2 specific Enterococcus faecium strains) incorporated into a cornmeal carrier. Supplemented cows were fed the DFM 21 d prior to expected calving date through 10 wk postpartum. Cows supplemented with DFM had higher estimated ruminally available dry matter (DM) for both corn silage and haylage than did control cows. Supplemented cows consumed more DM during both the pre- and postpartum periods. In addition, those supplemented with DFM produced 2.3 kg more milk/cow per d than did nonsupplemented cows. There was no difference in 3.5% fat-corrected milk. Milk fat percentage was lower, but not depressed (4.76 vs. 4.44%) for cows receiving DFM. There were no differences in milk fat yield or milk protein percentage and yield. Cows consuming DFM had higher blood glucose postpartum, as well as lower β-hydroxybutyrate levels both prepartum and on d 1 postpartum. Plasma nonesterified fatty acid concentration was not statistically affected by DFM, but was numerically lower prepartum and higher postpartum for supplemented cows. This study demonstrated that targeted DFM supplementation enhanced ruminal digestion of forage DM. Early lactation cows receiving supplemental DFM produced more milk and consumed more DM during the pre- and postpartum periods. Cows consuming DFM, however, experienced a lower, but not depressed, fat percentage compared with nonsupplemented cows.  相似文献   

9.
Thirty-two multiparous Holstein cows were used to investigate the effects of chromium-l-methionine (Cr-Met) supplementation and dietary grain source on performance and lactation during the periparturient period. Cows were fed a total mixed ration consisting of either a barley-based diet (BBD) or a corn-based diet (CBD) from 21 d before anticipated calving through 28 d after calving. The Cr-Met was supplemented at dosages of 0 or 0.08 mg of Cr/kg of metabolic body weight. The study was designed as a randomized complete block design with 2 (Cr-Met levels) × 2 (grain sources) factorial arrangement. There was no Cr effect on prepartum dry matter intake (DMI) or postpartum DMI, body weight (BW), net energy balance, and whole tract apparent digestibility of nutrients. Prepartum DMI as a percentage of BW tended to increase with Cr-Met. Supplemental Cr-Met tended to increase milk yield whereas milk protein percentage decreased. Pre- and postpartum DMI, BW, net energy balance, milk yield, and milk composition were not affected by substituting ground barley with ground corn. The addition of Cr-Met increased prepartum DMI and tended to increase postpartum DMI of the BBD but not the CBD. The change in prepartum DMI was smaller when the BBD was supplemented with Cr-Met but remained unchanged when the CBD was supplemented with Cr-Met. Yields of crude protein and total solids in milk and prepartum digestibility of DM and organic matter tended to increase when Cr-Met was added to the BBD but remained unchanged when added to the CBD. Periparturient cows failed to respond to the grain source of the diet, whereas they showed greater response in milk yield to diets supplemented with Cr-Met. In conclusion, the present results demonstrate that the beneficial effect of Cr-Met supplementation during the periparturient period to improve feed intake may depend on the grain source of the diet.  相似文献   

10.
The objective of this research was to determine whether different dry matter intakes (DMI) or forage percentages prepartum would have an impact on postpartum performance. Multiparous Holstein cows (n = 41) received either high (H) or low (L) forage rations that were fed free choice (F) or restricted (R), i.e., HF, HR, LF, and LR. The L rations were higher in net energy of lactation and lower in neutral detergent fiber concentrations. After calving, all cows were fed the same ration ad libitum. Prepartum DMI were 8.0 for R versus 12.4 kg/d for F with LF greater than HF (14.1 vs. 10.7 kg/d). Prepartum treatments did not affect postpartum means for DMI, milk yield, milk protein percentage, body weight, body condition score, or plasma glucose concentrations (overall means 1 to 40 DIM were, respectively, 21.1 kg/d, 34.0 kg/d, 3.03%, 624 kg, 3.2, and 66 mg/dl). However, curves from 1 to 40 DIM showed that DMI and milk yield were slightly higher in early lactation in cows whose DMI had been restricted prepartum but mean milk fat percentage was lower (3.10 vs. 3.42%). Plasma NEFA were higher and insulin lower in H versus L before and after calving. High DMI prepartum, at best, showed no advantage over restricted feeding.  相似文献   

11.
Our objectives were to determine if dietary cation-anion difference (DCAD) and source of anions influence periparturient feed intake and milk production of dairy cattle during the transition period. Diets differed in DCAD (cationic or anionic) and anionic supplement. The 4 diets used prepartum were (1) control [DCAD +20 mEq/100 g of dry matter (DM)], (2) Bio-Chlor (DCAD −12 mEq/100 g of DM; Church & Dwight Co. Inc., Princeton, NJ), (3) Fermenten (DCAD −10 mEq/100 g of DM; Church & Dwight Co. Inc.), and (4) salts (DCAD −10 mEq/100 g of DM). Urine pH was lower for cows that consumed an anionic diet prepartum compared with control. Prepartum diet had no effect on prepartum dry matter intake (DMI) of multiparous or primiparous cows. Postpartum DMI and milk yield for multiparous cows fed anionic diets prepartum were greater compared with those fed the control diet. Postpartum DMI and milk yield of primiparous cows were similar for prepartum diets. Feeding prepartum anionic diets did not affect plasma Ca at or near calving. However, cows fed anionic diets began their decline in plasma Ca later than control cows. Postpartum β-hydroxybutyrate and nonesterified fatty acids were lower for primiparous cows fed prepartum anionic diets compared with those fed the control diet. Prepartum and postpartum plasma glucose concentrations were not affected by prepartum diet for all cows. Liver triglyceride differed for parity by day. Parities were similar at 21 d prepartum, but at 0 d and 21 d postpartum, levels were greater for multiparous cows. Results indicate that decreasing the DCAD of the diet during the prepartum period can increase postpartum DMI and milk production of multiparous cows without negatively affecting performance of primiparous cows.  相似文献   

12.
The objectives of this study were to investigate the effects of forage source [wheat straw (WS) or orchardgrass hay (OG)] and total amount of diet dry matter fed [ad libitum or restricted to 70% of predicted dry matter intake (DMI)] prepartum on postpartum performance. The study design was a 2 × 2 factorial design with 10 cows per treatment. Treatments were WS total mixed ration (TMR) ad libitum, OG TMR ad libitum, WS TMR restricted, and OG TMR restricted. The WS TMR (dry matter basis) contained 30% WS, 20.7% corn silage, 10.0% alfalfa hay, 18.2% ground corn, 16.8% soybean meal, and 4.3% molasses mineral mix (14.7% CP, 1.5 Mcal/kg of net energy for lactation, 37.0% neutral detergent fiber). The OG TMR contained 30% OG, 46.2% corn silage, 10.0% alfalfa hay, 9.5% soybean meal, and 4.3% molasses (14.2% CP, 1.5 Mcal/kg of net energy for lactation, 41.0% neutral detergent fiber). Cows received 1 lactation diet after calving (17.7% CP, 1.6 Mcal/kg of net energy for lactation, 27.3% neutral detergent fiber). Total diet DMI prepartum was higher for ad libitum than for restricted as designed, but forage source had no effect on DMI. Total tract apparent digestibilities of DM and NDF were greater for OG than for WS. Postpartum DMI expressed as a percentage of body weight for the first week of lactation was higher for ad libitum than for restricted diets. Postpartum DMI during the first 30 d of lactation was higher for OG than for WS, but no effect was observed for the amount fed prepartum. Milk yield during the first week of lactation was higher for OG than for WS; however, during the first 30 d, 3.5% fat-corrected milk yield and yield of milk fat were highest for OG TMR restricted and WS TMR ad libitum. Prepartum treatments had a limited effect on pre- and postpartum lipid metabolism; however, cows fed WS TMR ad libitum had the highest postpartum β-hydroxybutyrate. Eating behavior was observed by 10-min video scans of 24-h video surveillance for 5 d pre- and postpartum. Prepartum eating time and eating bouts tended to be greater by WS than for OG, and postpartum eating time per kilogram of neutral detergent fiber intake tended to be greater for WS than for OG. Results indicate that forage source and amount of DM fed prepartum affected postpartum performance and tended to alter the behavior of cows in tie-stall barns.  相似文献   

13.
An experiment was conducted using 14 multiparous Holstein and 14 multiparous Jersey cows to determine if dry matter intake (DMI), specifically the decline in prepartum DMI and plasma parameters differed between breeds. Cows were blocked by expected calving date and received a dry cow total mixed ration (15% crude protein and 39% neutral detergent fiber) beginning 30 d before expected calving date. At calving, cows were switched to a lactation total mixed ration (17% crude protein and 33% neutral detergent fiber). Data were collected from d 23 prepartum to d 1 postpartum. Body weight was greater for Holsteins compared with Jerseys, but body condition score did not differ between breeds. Dry matter intake decreased for both Holsteins and Jerseys as parturition approached. The interaction of breed × day prepartum was significant for DMI with the magnitude of depression being greater for Holsteins compared with Jerseys. Plasma glucose and β-hydroxy-butyrate was similar between breeds. Plasma nonesterified fatty acids (NEFA) were similar for the two breeds up to d 5 prepartum, but greater for Holsteins compared with Jerseys thereafter. The decline in prepartum DMI was positively correlated to plasma NEFA for Holsteins, but not for Jerseys. These results indicate that breed differences exist for the decline in prepartum DMI and plasma NEFA. In addition, these data show an association between prepartum DMI depression and plasma NEFA but do not suggest a causal relationship.  相似文献   

14.
《Journal of dairy science》2022,105(5):4032-4047
Our objectives were (1) to determine whether increasing metabolizable protein (MP) supply above requirements in late-gestation cows would benefit health, milk production, and reproduction; (2) to determine whether an increased supply of MP postpartum affects production; and (3) to determine whether supply of MP prepartum interacts with MP supply postpartum. Pregnant nonlactating cows (n = 60) blocked by expected parturition date were assigned to 1 of 3 prepartum diets from 21 d prepartum to parturition: 12% crude protein (CP) soybean meal (SBM) supplement (LSB); 15% CP SBM supplement (HSB); and 15% CP SBM plus animal-marine protein supplement (HMP). Diets were formulated to supply an estimated 924, 988, and 1,111 g/d of MP, respectively, at 11.5 kg of dry matter intake (DMI). After parturition, cows received diets containing 18% CP, either from SBM (SB) or SBM plus animal-marine protein (AMP) supplements, that provided 2,056 (SB) or 2,293 g/d (AMP) of MP at 21 kg of DMI; thus, treatments were in a 3 × 2 factorial arrangement. Milk production and DMI were recorded for 63 d postpartum. Prepartum DMI was lower at wk ?3 for cows fed LSB compared with those fed HSB or HMP. Postpartum DMI did not differ significantly between cows fed SB and those fed AMP (20.8 vs. 19.6 kg/d). Milk production did not differ due to prepartum diets or postpartum diets. Milk fat and protein percentages were not affected by prepartum or postpartum diets. Cows fed AMP postpartum tended to produce more milk fat, but 4% fat-corrected milk (FCM) did not differ from SB-supplemented cows (33.6 kg/d vs. 32.2 kg/d). Gross feed efficiency (FCM/DMI) was greater for cows fed AMP postpartum (1.82 vs. 1.68). Prepartum concentrations of urea N in plasma were lower for LSB than for HSB and HMP, and HSB was greater than HMP. Postpartum concentrations of nonesterified fatty acids and β-hydroxybutyrate were greater for cows fed AMP postpartum than for those fed SB. Postpartum urea N was higher for SB than for AMP (14.4 vs. 12.5 mg/dL). Concentration of total protein in plasma was greater postpartum for cows fed HSB or HMP prepartum than for those fed LSB, and was greater postpartum for cows fed AMP than for those fed SB. Hepatic concentrations of total lipids and triglyceride did not differ among treatments. Hepatic glycogen was greater postpartum for cows fed SB postpartum. Feeding HSB or HMP increased the number of follicles 6 to 9 mm in diameter compared with LSB. The size of the largest follicle was increased by HMP compared with HSB. In conclusion, increasing the amount of MP fed to cows during the last 21 d prepartum did not affect milk production or BCS but increased plasma total protein concentration. Follicular dynamics were improved by increasing the amount of MP prepartum. Feeding HMP prepartum improved follicular dynamics prepartum and increased milk fat yield in wk 1. Feeding AMP postpartum increased efficiency of FCM production and plasma total protein. We found few interactions between prepartum and postpartum MP supply.  相似文献   

15.
In trial 1, the effects of dietary energy (102, 131 or 162% of requirement) in the dry period and of sodium bicarbonate (0 or .75% of diet dry matter) in early lactation were assessed with 31 cows in a 3 X 2 factorial arrangement of treatments. Body condition and weight increased linearly with prepartum energy. Dry matter intake and milk yield were similar across treatments through 12 wk postpartum. Sodium bicarbonate increased milk fat content only in the 131% group, an effect apparently related to greater mobilization of fat in that group. In trial 2, energy treatments imposed in late lactation (145 to 55 d prepartum) and in the dry period (55 to 0 d) were 1) cows fed to requirement in both periods, 2) cows overfed in the first and underfed in the second period, 3) cows fed to requirement in the first and overfed in the second period, and 4) cows overfed in both periods. Cows in treatments 1 and 2 (normal) calved in a thinner state than those in 3 or 4 (fat). In the first 12 wk postpartum, intake did not differ, but cows in groups 3 and 4 produced more milk. Sodium bicarbonate imposed factorially postpartum increased milk fat content. Overconsumption of energy prepartum did not impair production when high energy total mixed rations were fed postpartum.  相似文献   

16.
Multiparous Holstein cows (n = 61) were used to determine the effects of chromium propionate (Cr-Pro) supplementation during the periparturient period and early lactation on metabolism, performance, and the incidence of cytological endometritis (CE). After a 1-wk preliminary period, cows were assigned randomly to 1 of 2 treatments from 21 d before expected calving through 63 d postpartum: (1) control (n = 31) and (2) Cr-Pro (n = 30) administered by daily topdress at a rate of 8 mg/d of Cr. A tendency was detected for increased dry matter intake (DMI) during the prepartum period for cows fed Cr-Pro. Moreover, cows fed Cr-Pro tended to have lower plasma concentrations of nonesterified fatty acids during the prepartum period. However, effects of Cr-Pro supplementation on postpartum DMI and milk yield were not significant. Cows fed Cr-Pro tended to have higher urea N concentrations in milk. An interaction of treatment and day existed during the postpartum period, such that cows fed Cr-Pro had lower plasma glucose concentrations within the first day postpartum compared with controls. Plasma haptoglobin concentration was not affected by treatment during the postpartum period. Blood neutrophil glycogen concentrations were not affected by treatment when sampled at either 7 d postpartum or on one day between 40 and 60 d (48 d ± 0.44 standard error) postpartum. Evaluation of endometrial cytology by low volume lavage at 7 d postpartum (first lavage) and on one day between 40 and 60 d (second lavage) postpartum revealed that cows fed Cr-Pro tended to have a higher percentage of neutrophils at first lavage and decreased incidence of CE as assessed at second lavage. In conclusion, supplementation with Cr-Pro resulted in trends for increased DMI and lower plasma nonesterified fatty acids prepartum. Postpartum production and energy metabolism were not affected by treatment; however, Cr-Pro supplementation tended to affect the postpartum influx of neutrophils into the uterus and decreased the incidence of CE, suggesting positive effects of Cr-Pro supplementation on uterine health.  相似文献   

17.
Holstein cows (n = 30) entering second or greater lactation were fed fat supplements (90 g/d of fatty acids) consisting of Ca salts of either palm fatty acid distillate (control) or a mixture of palm fatty acid distillate and mixed isomers of conjugated linoleic acid (CLA, 30.4 g/ d) from 2 wk prepartum through 20 wk postpartum to determine whether CLA would inhibit milk fat synthesis during early lactation and, in turn, affect energy metabolism of dairy cows during the transition period and early lactation. Feeding CLA did not affect DMI or plasma concentrations of glucose, nonesterfied fatty acids, or beta-hydroxbutyrate during the prepartum period and did not affect postpartum DMI. Feeding CLA reduced milk fat content by 12.5% during early lactation; however, cows fed CLA tended to produce approximately 3 kg/d more milk during the first 20 wk of lactation. Feeding CLA tended to decrease the contribution of short- and medium-chain (C < or = 16) fatty acids to milk fat. Changes in milk yield, milk fat content, and milk fatty acid composition were not apparent until after the second week of lactation. Yield of 3.5% fat-corrected milk, milk protein content, milk protein composition, and calculated energy balance were not affected by treatment. Postpartum concentrations of glucose, nonesterfied fatty acids, and beta-hydroxbutyrate in plasma and hepatic content of glycogen and triglycerides were similar between treatments. These data imply that with CLA treatment in early lactation, dairy cows decreased milk fat synthesis and appeared to respond by partitioning more nutrients toward milk synthesis rather than improving net energy balance.  相似文献   

18.
《Journal of dairy science》2022,105(7):5761-5775
Our objective was to investigate the effects of prepartum metabolizable protein (MP) supply and management strategy on milk production and blood biomarkers in early lactation dairy cows. Ninety-six multigravida Holstein cows were used in a randomized complete block design study, blocked by calving date, and then assigned randomly to 1 of 3 treatments within block. Cows on the first treatment were fed a far-off lower MP diet [MP = 83 g/kg of dry matter (DM)] between ?55 and ?22 d before expected calving and then a close-up lower MP diet (MP = 83 g/kg of DM) until parturition (LPLP). Cows on the second treatment were fed the far-off lower MP diet between ?55 to ?22 d before expected parturition and then a prepartum higher MP diet (MP = 107 g/kg of DM) until calving (LPHP). Cows on the third treatment had a shortened 43-d dry period and were fed the prepartum higher MP diet from dry-off to parturition (SDHP). After calving, cows received the same fresh diet from d 0 to 14 and the same high diet from d 15 to 84. Data were analyzed separately for wk ?6 to ?1 and wk 1 to 12, relative to parturition. Dry matter intake from wk ?6 to ?1 was not different between LPHP and LPLP and increased for SDHP compared with LPLP. In contrast, dry matter intake for wk 1 to 12 postpartum did not change for LPHP versus LPLP or for SDHP versus LPLP. Compared with LPLP cows, LPHP cows had lower energy-corrected milk yield and tended to have decreased milk fat yield during wk 1 to 12 of lactation. Conversely, yields of energy-corrected milk and milk fat and protein were similar for SDHP compared with LPLP. Plasma urea N during wk ?3 to ?1 increased for LPHP versus LPLP and for SDHP versus LPLP; however, no differences in plasma urea N were observed postpartum. Elevated prepartum MP supply did not modify circulating total fatty acids, β-hydroxybutyrate, total protein, albumin, or aspartate aminotransferase during the prepartum and postpartum periods. Increased MP supply prepartum combined with a shorter dry period (SDHP vs. LPLP) tended to increase whole-blood β-hydroxybutyrate postpartum; however, other blood metabolites were not affected. Taken together, under the conditions of this study, elevated MP supply in close-up diets reduced milk production without affecting blood metabolites in multiparous dairy cows during early lactation. A combination of a shorter dry period and increased prepartum MP supply (i.e., SDHP vs. LPLP) improved prepartum dry matter intake without modifying energy-corrected milk yield and blood biomarkers in early lactation cows.  相似文献   

19.
One hundred fifty multiparous cows were balanced to 1 of 3 treatments (2 pens/trt) according to previous lactation 305-d mature equivalent yield to evaluate supplementation with yeast culture (YC; A-Max, Vi-COR, Mason, IA) and YC plus enzymatically hydrolyzed yeast (YC+EHY; Celmanax, Vi-COR) on production performance in dairy cattle. Cows entered pens at calving and remained through 14 wk postpartum. Treatment assignment to pens was random throughout the barn. Pens were identical in layout and each contained an exit alley to eliminate feed and animal mixing. The 3 treatments were control: nonsupplemented; YC: control diet with YC (56 g/d); and YC+EHY: control diet plus YC and EHY (28 g/d). Mean pen dry matter intake was similar across treatments. Cows supplemented with YC and YC+EHY produced more milk, fat-corrected milk, and energy-corrected milk than control cows (1.4 and 1.6, 1.6 and 1.8, 1.7 and 1.9 kg, respectively). Treatments YC and YC+EHY did not differ. Milk fat and lactose percentages were not affected by treatment. Milk protein percentage was higher for cows supplemented with YC+EHY than for those on YC and control treatments (2.98, 2.93, and 2.91%, respectively) with control and YC-supplemented cows not being different from each other. Differences in fat and protein yields were primarily reflective of milk yield. Treatment had no effect on milk urea nitrogen. No differences in the incidence of metabolic health were observed; however, cases of clinical mastitis for YC+EHY were less than half those for control and YC during wk 8 to 14 on trial. Somatic cell count was higher for cows fed control and YC diets compared with YC+EHY, primarily during wk 8 to 14 on trial. Supplementation of early lactation cows with YC improved milk production performance; furthermore, EHY supplementation improved milk protein percentage and mammary gland health.  相似文献   

20.
The effect of induced parturition and estradiol on feed intake, liver triglyceride, plasma metabolites, and milk yield was evaluated in fifty-six Holstein cows and heifers. Cows were assigned to treatments on d 260 of gestation and were on trial until d 10 postpartum for measurement of dry matter intake (DMI), plasma metabolites, and liver triglyceride and until d 31 postpartum to measure milk yield. Fourteen animals per group (9 cows and 5 heifers) received either a placebo, 1 mg of fenprostalene, 50 mg of estradiol-17 beta benzoate, or both on d 276 of gestation. Cows that received fenprostalene consumed more dry matter (DM) for the last 8 d prepartum than did cows that did not receive fenprostalene (9.6 kg/d vs. 8.5 kg/d, respectively) but consumed less DM for the first 10 d postpartum (10.9 kg/d vs. 13.1 kg/d, respectively). Cows injected with estradiol-17 beta benzoate tended to consume less DM postpartum than did cows not injected with estradiol-17 beta benzoate (11.3 kg/d vs. 12.7 kg/d, respectively). There was no effect of treatment on milk yield; however, a fenprostalene by day interaction resulted from lower milk yield on d 3, 4, 5, 7, and 10 relative to calving in cows that received fenprostalene. Administration of fenprostalene resulted in a delay in the peak plasma nonesterified fatty acid (NEFA) concentration until 2 d after calving. Plasma glucose concentrations were greatest 1 d prior to calving for cows that received fenprostalene, whereas plasma glucose concentrations peaked on the day of calving for cows that did not receive fenprostalene. Liver triglyceride increased over time; however, there was no effect of treatment on liver triglyceride. Calving induction improved DMI for the last 8 d prepartum, but a concomitant decrease in liver triglyceride after calving did not result. Estradiol-17 beta benzoate had no effect on plasma metabolites or liver triglyceride, indicating that the physiological rise in estradiol prior to calving does not have a primary role in lipolysis or hepatic fatty acid metabolism in the dairy cow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号