首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the exact analysis of a multihop multibranch (MHMB) relaying network is investigated wherein each relay can operate in amplify‐and‐forward (AF) or decode‐and‐forward (DF) modes depending upon the decoding result of its received signal. If a relay decodes the received signal correctly, it works in DF mode; otherwise, the relay operates in AF mode. Therefore, we name such relaying network as hybrid amplify‐and‐forward and decode‐and‐forward (hybrid AF/DF) relaying network. We first investigate the signal transmission from source to destination node via n number of relays in a hybrid AF/DF MHMB mode. Then, we obtained the statistical features and analyze the end‐to‐end signal‐to‐noise ratio (SNR). Finally, a comprehensive performance analysis is conducted by using maximal ratio combining (MRC) scheme at the destination node. For comparison, we also obtained the results using selection combining (SC) scheme at the destination node. To the best of our knowledge, very few works in the literature have considered a general system model of MHMB relaying network wherein each relay can operate in AF or DF modes, that is, a hybrid AF/DF relaying network. Accordingly, the analysis of our system model is not only novel and exact, but also is comprehensive and can be employed in the future works.  相似文献   

2.
Spectral efficient protocols for half-duplex fading relay channels   总被引:7,自引:0,他引:7  
We study two-hop communication protocols where one or several relay terminals assist in the communication between two or more terminals. All terminals operate in half-duplex mode, hence the transmission of one information symbol from the source terminal to the destination terminal occupies two channel uses. This leads to a loss in spectral efficiency due to the pre-log factor one-half in corresponding capacity expressions. We propose two new half-duplex relaying protocols that avoid the pre-log factor one-half. Firstly, we consider a relaying protocol where a bidirectional connection between two terminals is established via one amplify-and-forward (AF) or decode-and-forward (DF) relay (two-way relaying). We also extend this protocol to a multi-user scenario, where multiple terminals communicate with multiple partner terminals via several orthogonalize-and-forward (OF) relay terminals, i.e., the relays orthogonalize the different two-way transmissions by a distributed zero-forcing algorithm. Secondly, we propose a relaying protocol where two relays, either AF or DF, alternately forward messages from a source terminal to a destination terminal (two-path relaying). It is shown that both protocols recover a significant portion of the half-duplex loss  相似文献   

3.
Node localization in wireless networks is crucial for supporting advanced location-based services and improving the performance of network algorithms such as routing schemes. In this paper, we study the fundamental limits for time delay based location estimation in cooperative relay networks. The theoretical limits are investigated by obtaining Cramer–Rao Lower Bound (CRLB) expressions for the unknown source location under different relaying strategies when the location of the destination is known and unknown. More specifically, the effects of amplify-and-forward and decode-and-forward relaying strategies on the location estimation accuracy are studied. Furthermore, the CRLB expressions are derived for the cases where the location of only source as well as both source and destination nodes are unknown considering the relays as reference nodes. In addition, the effects of the node topology on the location estimation accuracy of the source node are investigated. The results reveal that the relaying strategy at relay nodes, the number of relays, and the node topology can have significant impacts on the location accuracy of the source node. Additionally, knowing the location of the destination node is crucial for achieving accurate source localization in cooperative relay networks.  相似文献   

4.
In this paper, we evaluate the delay experienced by Poisson arriving packets for cooperative truncated hybrid automatic repeat request (HARQ) with opportunistic relaying. We derive the theoretical expressions of the expected waiting time and the packet's sojourn time in the queue of truncated opportunistic cooperative ARQ, HARQ I with and without packet combining (PC), and HARQ II with code combining (CC). The analysis is valid for block Nakagami- $m$ fading channels and any number of relays for both amplify-and-forward (AF) and decode-and-forward (DF) relaying. In opportunistic AF cooperative HARQ, packet retransmission is done by the relay offering the highest instantaneous signal-to-noise ratio (SNR) of the relaying link (source–relay–destination). In opportunistic DF cooperative HARQ, retransmission is done by the relay offering the highest instantaneous SNR of the relay–destination link among the relays that have correctly decoded the transmitted packet by the source. If no relay has correctly decoded, the retransmission is made by the source. Simulation results are also provided to verify the tightness of the derived expressions. The results indicate a significant improvement of packet delivery delays when compared with the absence of cooperation.   相似文献   

5.
This paper considers the design of relay assisted F/TDMA ad hoc networks with multiple relay nodes each of which assists the transmission of a predefined subset of source nodes to their respective destinations. Considering the sum capacity as the performance metric, we solve the problem of optimally allocating the total power of each relay node between the transmissions it is assisting. We consider four different relay transmission strategies, namely regenerative decode-and-forward (RDF), nonregenerative decode-and-forward (NDF), amplify- and-forward (AF) and compress-and-forward (CF). We first obtain the optimum power allocation policies for the relay nodes that employ a uniform relaying strategy for all nodes. We show that the optimum power allocation for the RDF and NDF cases are modified water-filling solutions. Weobserve that for a given relay transmit power, NDF always outperforms RDF whereas CF always provides higher sum capacity than AF. When CF and NDF are compared, it is observed that either of CF or NDF may outperform the other in different scenarios. This observation suggests that the sum capacity can be further improved by having each relay adopt its relaying strategy in helping different source nodes. We investigate this problem next and determine the optimum power allocation and relaying strategy for each source node that relay nodes assist. We observe that optimum power allocation for relay nodes with hybrid relaying strategies provides higher sum capacity than pure RDF, NDF, AF or CF relaying strategies.  相似文献   

6.
On optimum selection relaying protocols in cooperative wireless networks   总被引:1,自引:0,他引:1  
In this letter, the outage probabilities of selection relaying protocols are analyzed and compared for cooperative wireless networks. It is assumed that both source and relay use equal allocated time in transmission. Depending on the quality of the source-relay channel, the relay may choose either Decode-and-Forward (DF), Amplify-and-Forward (AF), or Direct-Transmission (DT) to forward signals. It turns out that in terms of outage probability, two selection relaying schemes are better than others: selecting between DF and AF protocols (DF-AF) or selecting between DF and DT protocols (DF-DT). It is shown that with an equal power allocation, both of the DF-AF and DF-DT selection relaying protocols have the same asymptotic outage probability. However, with an optimum power allocation strategy, the DF-AF selection scheme is in general better than the DF-DT selection scheme. Note that the optimum power allocations depend on channel variances, not on instantaneous channel gains. When the quality of the relay-destination link is much better than that of the source-relay link, observed from simulation, the outage probability of the DF-AF selection protocol with its optimum power allocation is 1.5dB better than that of the DF-DT selection with its own optimum power allocation. Extensive simulations are presented to validate the analytical results.  相似文献   

7.
ABSTRACT

Energy harvesting (EH) is an eminent solution to perpetuate the lifetime of energy-constrained relay nodes in wireless sensor networks (WSNs). This paper considers a multi-hop amplify-and-forward (AF) network in which relay nodes with EH capability harvest energy inherent in the source transmitted radio frequency (RF) signal and use the harvested energy for signal transmission. Based on the time switching and power splitting EH receiver designs, we have examined the performance of, (i) time switching based relaying (TSR) and (ii) power splitting based relaying (PSR) protocols in multi-hop AF network, with throughput as the figure of merit. The numerical analysis reveals that, PSR outperforms TSR at high signal-to-noise ratio (SNR) whereas TSR outperforms PSR at low SNR, in multi-hop AF-WSNs with energy harvesting.  相似文献   

8.
In this paper, the energy efficiency (EE) of a decode and forward (DF) relay system is studied, where two sources communicate through a half-duplex relay node in one-way and two-way relaying strategies. Both the circuitry power and the transmission power of all nodes are taken into consideration. In addition, three different coding schemes for two-way DF relaying strategy with two phases and two-way DF relaying with three phases are considered. The aim is to maximize the EE of the system for a constant spectral efficiency (SE). For this purpose, the transmission time and the transmission power of each node are optimized. Simulations are used to compare the EE–SE curve of different DF strategies with one-way and two-way amplify and forward (AF) strategies and direct transmission (DT), to find the best energy efficient strategy in different SE conditions. Analytical and simulation results demonstrate that in low SE conditions, DF relaying strategies are more energy efficient compared to that of AF strategies and DT. However, in high SE conditions, the EE of two-way AF relaying and DT strategy outperform some of the DF relaying strategies. In simulations, the impact of different circuitry power and different channel conditions on the EE–SE curves are also investigated.  相似文献   

9.
In this paper, we propose minimum power allocation strategies for repetition-based amplify-and-forward (AF) relaying, given a required symbol error rate (SER) at the destination. We consider the scenario where one source and multiple relays cooperate to transmit messages to the destination. We derive the optimal power allocation strategy for two-hop AF cooperative network that minimizes the total relay power subject to the SER requirement at the destination. Two outstanding features of the proposed schemes are that the power coefficients have a simple solution and are independent of knowledge of instantaneous channel state information (CSI). We further extend the SER constraint minimum power allocation to the case of multibranch, multihop network and derive the closed-form solution for the power control coefficients. For the case of power-limited relays, we propose two iterative algorithms to find the power coefficients for the SER constraint minimum-energy cooperative networks. However, this power minimization strategy does not necessarily maximize the lifetime of battery-limited systems. Thus, we propose two other AF cooperative schemes which consider the residual battery energy, as well as the statistical CSI, for the purpose of lifetime maximization. Simulations show that the proposed minimum power allocation strategies could considerably save the total transmitted power compared to the equal transmit power scheme.  相似文献   

10.
A kind of amplify‐and‐forward (AF) and decode‐and‐forward (DF) mixed relay communication system is proposed in this letter. The source broadcasts the signal to all the relays. Relays that can decode the signal adopt DF scheme to retransmit the signal, while the rest adopt AF scheme for retransmission. The destination employs maximum ratio combining technique to maximize the received signal‐to‐noise ratio. Another situation concerned in this letter is that when the relay cannot decode the source signal, it may retransmit the interference signal with AF scheme. Closed‐form expressions of outage probability are derived. Simulation results show that the analytical curves agree with the simulated ones very well, and the AF‐DF mixed relay system can improve the availability of the relays. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The performance of multi-antenna multi- relay cooperative system is investigated in this paper. Two relaying strategies, i.e., reactive and proactive strategies are analyzed with the Amplifyand- Forward (AF) and Decode-and-Forward (DF) protocols. We derive the Cumulative Distribution Function (CDF) of the received Signal-to-Noise Ratio (SNR) at the destination, which is used to calculate the exact outage probability, for both AF and DF protocols. According to these results, we conclude that a cooperative network which composes K relays each equipped with nr antennas can achieve maximal order-(2nrK+1) diversity gain, by proper processing at relays and destination. Furthermore, the performance comparison is given, in terms of outage probability. These two strategies outperform each other in different scenarios in AF protocol, whilst proactive strategy is always better than its counterpart in DF protocol. According to these results, the optimal power allocation schemes among relay nodes are also presented, with reasonable power constraint.  相似文献   

12.
We consider a multiuser two-way relay network where multiple pairs of users exchange information with the assistance of a relay node, using orthogonal channels per pair. For a variety of two-way relaying mechanisms, such as decodeand- forward (DF), amplify-and-forward (AF) and compress-andforward (CF), we investigate the problem of optimally allocating relay?s power among the user pairs it assists such that an arbitrary weighted sum rate of all users is maximized, and solve the problem as one or a set of convex problems for each relaying scheme. Numerical results are presented to demonstrate the performance of the optimum relay power allocation as well as the comparison among different two-way relaying schemes.  相似文献   

13.
In multiuser cooperative relay networks, cooperative diversity can be obtained with the help of relays, while multiuser diversity is an inherent diversity in multiuser systems. In this letter, the performance analysis of multiuser diversity in cooperative multi-relay networks is presented. Both the case of all relay participating and the case of relay selection are considered. We first derive asymptotic expressions of outage probability and symbol error probability for amplify-and-forward (AF) and decode-and-forward (DF) protocols with joint multiuser and cooperative diversity. Then, the theoretical analysis are validated by Monte Carlo simulations. Both the theoretical analysis and simulations show that a multiuser diversity order of K and a cooperative diversity order of M+ 1 can be achieved simultaneously for both AF and DF protocols (where K is the number of accessing users and M is the number of available relays). These demonstrate that the multiuser diversity can be readily combined with the cooperative diversity in multiuser cooperative relay networks.  相似文献   

14.
OFDMA uplink frequency offset estimation via cooperative relaying   总被引:1,自引:0,他引:1  
Frequency offset estimation for an orthogonal frequency-division multiple access (OFDMA) uplink for amplify-and-forward (AF) relays and a new type of relay (R) called decode-and-compensate-and-forward (DcF) relays are studied. Multiple relays are considered, and the relay with the best S rarr R channel is chosen to perform re-transmission, where S and R represent the source and relay nodes, respectively. Frequency offsets due to the mismatches between the transmitter and receiver oscillators are considered, and without considering the effect of Doppler shift, both S rarr D and S rarr R rarr D links have the same frequency offset, where D represents the destination. Thus, by using these two transmissions, D generates two frequency offset estimates, which are combined to minimize the mean square error (MSE). Power allocation between S and R can be adaptively adjusted to optimize the cooperative scheme in terms of frequency offset error variance. When channel state information (CSI) is available at each mobile node, a scheme where the relays adaptively switch between the cooperative and conventional (no relaying) transmissions is proposed to optimize the frequency offset estimation. Although the frequency offset estimation accuracy in the DcF mode is somewhat worse than the AF mode, both modes outperform the conventional transmission. However, DcF (or decode-and-forward (DF)) relays outperform AF relays in terms of channel capacity and bit error rate (BER).  相似文献   

15.
Wireless networks contain an inherent distributed spatial diversity that can be exploited by relays. Relay networks can take advantage of the broadcast-oriented nature of wireless transmission, but require more radio resource to transmit data for their multi-hop traits. Fortunately, incremental relaying technique, which can choose direct or multi-hop transmission adaptively, can efficiently utilize resource. In this article, the incremental transmission with amplify-and-forward (AF) relays is focused on. A practical hybrid-automatic retransmission request (HARQ) protocol is designed, and the related optimal relay selection strategy is proposed. To analyze the cooperative diversity of system with the proposed protocol, the capacity lower bound is deduced. Simulation and analytical results indicate that by adopting the optimal relay selection strategy, the system with the proposed HARQ protocol can achieve an order of cooperative diversity that equals the aggregated number of the relay and source nodes.  相似文献   

16.
In this paper, we investigate energy harvesting decode-and-forward relaying non-orthogonal multiple access (NOMA) networks. We study two cases of single relay and multiple relays with partial relay selection strategy. Specifically, one source node wishes to transmit two symbols to two respective destinations directly and via the help of one selected intermediate energy constraint relay node, and the NOMA technique is applied in the transmission of both hops (from source to relay and from relay to destinations). For performance evaluation, we derive the closed-form expressions for the outage probability (OP) at D 1 and D 2 with both cases of single and multiple relays. Our analysis is substantiated via Monte Carlo simulation. The effect of several parameters, such as power allocation factors in both transmissions in two hops, power splitting ratio, energy harvesting efficiency, and the location of relay nodes to the outage performances at the two destinations is investigated.  相似文献   

17.
An optimal cooperation strategy, decode-to-cooperate, is proposed and investigated for performance improvements in dual-hop wireless relay networks. Based on decode-and-forward (DF) strategy with multiple relay selection, we design a novel scheme such that the source node keeps transmitting sequentially and the selected relays cooperate by transmitting the decoded signal using distributed Alamouti coding. We exploit the multipath propagation effect of the wireless channel to achieve lower probability of error and introduce optimum power allocation and relay positioning. We analyze the scenario when the source to destination direct link is not available and derive a closed form expression for symbol error rate (SER), its upper bound and an asymptotically tight approximation to exploit the performance gain by selecting the optimum relays in a multiple-relay cooperation scheme. Moreover, asymptotic optimum power allocation (based on the SER approximation) and optimal relay positioning are also considered to further improve the SER. The proposed relay selection scheme outperforms cooperative (DF) and non-cooperative schemes by more than 2 dB.  相似文献   

18.
In this paper, symbol-error-rate (SER) performance analysis and optimum power allocation are provided for uncoded cooperative communications in wireless networks with either decode-and-forward (DF) or amplify-and-forward (AF) cooperation protocol, in which source and relay send information to destination through orthogonal channels. In case of the DF cooperation systems, closed-form SER formulation is provided for uncoded cooperation systems with PSK and QAM signals. Moreover, an SER upper bound as well as an approximation are established to show the asymptotic performance of the DF cooperation systems, where the SER approximation is asymptotically tight at high signal-to-noise ratio (SNR). Based on the asymptotically tight SER approximation, an optimum power allocation is determined for the DF cooperation systems. In case of the AF cooperation systems, we obtain at first a simple closed-form moment generating function (MGF) expression for the harmonic mean to avoid the hypergeometric functions as commonly used in the literature. By taking advantage of the simple MGF expression, we obtain a closed-form SER performance analysis for the AF cooperation systems with PSK and QAM signals. Moreover, an SER approximation is also established which is asymptotically tight at high SNR. Based on the asymptotically tight SER approximation, an optimum power allocation is determined for the AF cooperation systems. In both the DF and AF cooperation systems, it turns out that an equal power strategy is good, but in general not optimum in cooperative communications. The optimum power allocation depends on the channel link quality. An interesting result is that in case that all channel links are available, the optimum power allocation does not depend on the direct link between source and destination, it depends only on the channel links related to the relay. Finally, we compare the performance of the cooperation systems with either DF or AF protocol. It is shown that the performance of a systems with the DF cooperation protocol is better than that with the AF protocol. However, the performance gain varies with different modulation types and channel conditions, and the gain is limited. For example, in case of BPSK modulation, the performance gain cannot be larger than 2.4 dB; and for QPSK modulation, it cannot be larger than 1.2 dB. Extensive simulation results are provided to validate the theoretical analysis.  相似文献   

19.
Although extensive research has been carried out on the issue of how to optimally select relays in wireless relay networks, relay selection for mobile users is still a challenging problem because of the requirement that the dynamic selection should adapt to user mobility. Moreover, because the selected relays consume their energy on relaying data for the users, it is required that the users have to pay for this relay service. The price of selecting relays will affect the users' decisions. Assuming that different relays can belong to different service providers, we consider the situation that the service providers can strategically set the prices of their relays to maximize their profits. In this paper, we jointly study the dynamic relay selection for mobile users and profit maximization for service providers. Also, we design a Stackelberg‐game hierarchical framework to obtain the solution. At the lower level, we investigate the relay selection problem for the mobile users under given prices of selecting the relays. It is formulated as a Markov decision process problem with the objective to minimize the mobile user's long‐term average cost (which consists of the payment to the relay service and the cost due to packet loss), and solved by applying the linear programming technique. At the upper level, we study the game of setting relay prices for the service providers, with the knowledge that the mobile users will make relay selections based on their given prices. Nash equilibrium is obtained as the solution. Our results can help to provide a guidance for service providers to compete for providing relay services. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
本文针对双跳全双工多中继系统,研究了在中继节点能量受限情况下的中继选择方案。在该文中,中继工作方式为放大转发(Amplify-and-Forward, AF),且中继通过收集源节点提供的能量来对源节点信息进行转发。整个通信过程分为两阶段,能量收集阶段与信息传输阶段,即采用的是时域分割方案。为了获得较好的性能与复杂度折中,本文分别研究了三种不同的中继选择策略,即最佳中继选择方案和两种次优中继选择方案。针对所提的三种方案,推导分析了其系统中断概率的理论值和下边界,以及系统的有效吞吐量。最后,利用蒙特卡洛仿真验证了理论分析的正确性,且仿真结果表明最佳中继选择方案的性能优于两种次优的中继选择方案,但其实现的复杂度高。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号