首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA microarray is a very active area of research in the molecular diagnosis of cancer. Microarray data are composed of many thousands of features and from tens to hundreds of instances, which make the analysis and diagnosis of cancer very complex. In this case, gene/feature selection becomes an elemental and essential task in data classification. In this paper, we propose a complete cancer diagnostic process through kernel-based learning and feature selection. First, support vector machines recursive feature elimination (SVM-RFE) is used to prefilter the genes. Second, the SVM-RFE is enhanced by using binary dragonfly (BDF), which is a recently developed metaheuristic that has never been benchmarked in the context of feature selection. The objective function is the average of classification accuracy rate generated by three kernel-based learning methods. We conducted a series of experiments on six microarray datasets often used in the literature. Experiment results demonstrate that this approach is efficient and provides a higher classification accuracy rate using a reduced number of genes.  相似文献   

2.
A cancers disease in virtually any of its types presents a significant reason behind death surrounding the world. In cancer analysis, classification of varied tumor types is of the greatest importance. Microarray gene expressions datasets investigation has been seemed to provide a successful framework for revising tumor and genetic diseases. Despite the fact that standard machine learning ML strategies have effectively been valuable to realize significant genes and classify category type for new cases, regular limitations of DNA microarray data analysis, for example, the small size of an instance, an incredible feature number, yet reason for limitation its investigative, medical and logical uses. Extending the interpretability of expectation and forecast approaches while holding a great precision would help to analysis genes expression profiles information in DNA microarray dataset all the most reasonable and proficiently. This paper presents a new methodology based on the gene expression profiles to classify human cancer diseases. The proposed methodology combines both Information Gain (IG) and Standard Genetic Algorithm (SGA). It first uses Information Gain for feature selection, then uses Genetic Algorithm (GA) for feature reduction and finally uses Genetic Programming (GP) for cancer types’ classification. The suggested system is evaluated by classifying cancer diseases in seven cancer datasets and the results are compared with most latest approaches. The use of proposed system on cancers datasets matching with other machine learning methodologies shows that no classification technique commonly outperforms all the others, however, Genetic Algorithm improve the classification performance of other classifiers generally.  相似文献   

3.
In a DNA microarray dataset, gene expression data often has a huge number of features(which are referred to as genes) versus a small size of samples. With the development of DNA microarray technology, the number of dimensions increases even faster than before, which could lead to the problem of the curse of dimensionality. To get good classification performance, it is necessary to preprocess the gene expression data. Support vector machine recursive feature elimination (SVM-RFE) is a classical method for gene selection. However, SVM-RFE suffers from high computational complexity. To remedy it, this paper enhances SVM-RFE for gene selection by incorporating feature clustering, called feature clustering SVM-RFE (FCSVM-RFE). The proposed method first performs gene selection roughly and then ranks the selected genes. First, a clustering algorithm is used to cluster genes into gene groups, in each which genes have similar expression profile. Then, a representative gene is found to represent a gene group. By doing so, we can obtain a representative gene set. Then, SVM-RFE is applied to rank these representative genes. FCSVM-RFE can reduce the computational complexity and the redundancy among genes. Experiments on seven public gene expression datasets show that FCSVM-RFE can achieve a better classification performance and lower computational complexity when compared with the state-the-art-of methods, such as SVM-RFE.  相似文献   

4.
Cancer classification is one of the major applications of the microarray technology. When standard machine learning techniques are applied for cancer classification, they face the small sample size (SSS) problem of gene expression data. The SSS problem is inherited from large dimensionality of the feature space (due to large number of genes) compared to the small number of samples available. In order to overcome the SSS problem, the dimensionality of the feature space is reduced either through feature selection or through feature extraction. Linear discriminant analysis (LDA) is a well-known technique for feature extraction-based dimensionality reduction. However, this technique cannot be applied for cancer classification because of the singularity of the within-class scatter matrix due to the SSS problem. In this paper, we use Gradient LDA technique which avoids the singularity problem associated with the within-class scatter matrix and shown its usefulness for cancer classification. The technique is applied on three gene expression datasets; namely, acute leukemia, small round blue-cell tumour (SRBCT) and lung adenocarcinoma. This technique achieves lower misclassification error as compared to several other previous techniques.  相似文献   

5.
随着DNA微阵列技术的出现,大量关于不同肿瘤的基因表达谱数据集被发布到网络上,从而使得对肿瘤特征基因选择和亚型分类的研究成为生物信息学领域的热点。基于Lasso(least absolute shrinkage and selection operator)方法提出了K-split Lasso特征选择方法,其基本思想是将数据集平均划分为K份,分别使用Lasso方法对每份进行特征选择,而后将选择出来的每份特征子集合并,重新进行特征选择,得到最终的特征基因。实验采用支持向量机作为分类器,结果表明K-split Lasso方法减少了冗余特征,提高了分类精度,具有良好的稳定性。由于每次计算的维数降低,K-split Lasso方法解决了计算开销过大的问题,并在一定程度上解决了"过拟合"问题。因此K-split Lasso方法是一种有效的肿瘤特征基因选择方法。  相似文献   

6.
Abstract: Cancer classification, through gene expression data analysis, has produced remarkable results, and has indicated that gene expression assays could significantly aid in the development of efficient cancer diagnosis and classification platforms. However, cancer classification, based on DNA array data, remains a difficult problem. The main challenge is the overwhelming number of genes relative to the number of training samples, which implies that there are a large number of irrelevant genes to be dealt with. Another challenge is from the presence of noise inherent in the data set. It makes accurate classification of data more difficult when the sample size is small. We apply genetic algorithms (GAs) with an initial solution provided by t statistics, called t‐GA, for selecting a group of relevant genes from cancer microarray data. The decision‐tree‐based cancer classifier is built on the basis of these selected genes. The performance of this approach is evaluated by comparing it to other gene selection methods using publicly available gene expression data sets. Experimental results indicate that t‐GA has the best performance among the different gene selection methods. The Z‐score figure also shows that some genes are consistently preferentially chosen by t‐GA in each data set.  相似文献   

7.
The monitoring of the expression profiles of thousands of genes have proved to be particularly promising for biological classification. DNA microarray data have been recently used for the development of classification rules, particularly for cancer diagnosis. However, microarray data present major challenges due to the complex, multiclass nature and the overwhelming number of variables characterizing gene expression profiles. A regularized form of sliced inverse regression (REGSIR) approach is proposed. It allows the simultaneous development of classification rules and the selection of those genes that are most important in terms of classification accuracy. The method is illustrated on some publicly available microarray data sets. Furthermore, an extensive comparison with other classification methods is reported. The REGSIR performance is comparable with the best classification methods available, and when appropriate feature selection is made the performance can be considerably improved.  相似文献   

8.
DNA microarray technology has emerged as a prospective tool for diagnosis of cancer and its classification. It provides better insights of many genetic mutations occurring within a cell associated with cancer. However, thousands of gene expressions measured for each biological sample using microarray pose a great challenge. Many statistical and machine learning methods have been applied to get most relevant genes prior to cancer classification. A two phase hybrid model for cancer classification is being proposed, integrating Correlation-based Feature Selection (CFS) with improved-Binary Particle Swarm Optimization (iBPSO). This model selects a low dimensional set of prognostic genes to classify biological samples of binary and multi class cancers using Naive–Bayes classifier with stratified 10-fold cross-validation. The proposed iBPSO also controls the problem of early convergence to the local optimum of traditional BPSO. The proposed model has been evaluated on 11 benchmark microarray datasets of different cancer types. Experimental results are compared with seven other well known methods, and our model exhibited better results in terms of classification accuracy and the number of selected genes in most cases. In particular, it achieved up to 100% classification accuracy for seven out of eleven datasets with a very small sized prognostic gene subset (up to <1.5%) for all eleven datasets.  相似文献   

9.
Consistency modelling for gene selection is a new topic emerging from recent cancer bioinformatics research. The result of operations such as classification, clustering, or gene selection on a training set is often found to be very different from the same operations on a testing set, presenting a serious consistency problem. In practice, the inconsistency of microarray datasets prevents many typical gene selection methods working properly for cancer diagnosis and prognosis. In an attempt to deal with this problem, this paper proposes a new concept of classification consistency and applies it for microarray gene selection problem using a bootstrapping approach, with encouraging results.  相似文献   

10.
基因选择是基因表达数据分析中的重点问题.然而现有的方法没有综合考虑样本不平衡和基因间的相互作用。借鉴聚类的验证技术提出了基因选择的0-1规划模型,同时考虑了样本不平衡和基因间的相互作用。进一步根据0-1规划模型的特点,给出了基于贪心思想的启发式算法来求解所提出的优化问题。在3个真实的基因表达数据上对提出的方法进行测试并与两个对照的方法比较,结果表明所提出模型和算法是有效的且稳健的。  相似文献   

11.
高娟  王国胤  胡峰 《计算机科学》2012,39(10):193-197
从信息学角度出发寻找肿瘤相关基因、发现肿瘤基因表达特征对肿瘤的诊断和治疗具有重要的生物学意义,而肿瘤与正常组织的分类是其中一个重要应用。根据多类别肿瘤基因表达谱,提出了一种自动特征选择方法。首先,结合非参数方法和filter思想,利用决策序列的随机性度量基因的权值并排序;然后,采用相关信息熵进行冗余性排除,自动地选择出具有高分辨能力、低冗余度的特征基因子集。实验结果表明,提出的方法能从多类别肿瘤基因表达谱数据中自动选出30个具有良好分类能力的特征基因,且具有较高的正确识别率。  相似文献   

12.
杨昆  李建中  徐德昌  戴国骏 《软件学报》2010,21(9):2148-2160
提出集成分析来自相同研究问题的不同数据集来识别表达不稳定的基因.把这一问题形式化为一个非线性整数规划问题,三个启发式的算法被提出来求解这一优化问题;进一步地设计了一个统计量来度量基因的不稳定表达程度.提出的方法应用于两个真实数据,实验结果显示:所识别的不稳定基因在两个数据中的表达不一致;利用表达不稳定基因可以提高差异表达基因的筛选结果,而去除表达不稳定基因可以有效地提高微阵列数据分类.实验结果表明,提出的方法是有效的,并且表达不稳定基因可以为微阵列数据分析提供有价值的信息.  相似文献   

13.
Gene selection can help the analysis of microarray gene expression data. However, it is very difficult to obtain a satisfactory classification result by machine learning techniques because of both the curse-of-dimensionality problem and the over-fitting problem. That is, the dimensions of the features are too large but the samples are too few. In this study, we designed an approach that attempts to avoid these two problems and then used it to select a small set of significant biomarker genes for diagnosis. Finally, we attempted to use these markers for the classification of cancer. This approach was tested the approach on a number of microarray datasets in order to demonstrate that it performs well and is both useful and reliable.  相似文献   

14.
基于支持向量机的肿瘤分类特征基因选取   总被引:19,自引:0,他引:19  
依据基因表达谱有效建立肿瘤分类模型的关键在于准确找出决定样本类别的一组特征基因.针对该问题,在分析肿瘤基因表达谱特征的基础上,研究了肿瘤分类特征基因选取问题.首先,提出了一种新的类别可分性判据以滤除分类无关基因,并采用支持向量机作为分类器进行特征基因分类性能的检验.然后,采用两两冗余分析及基于支持向量机分类模型的灵敏度分析法进行冗余基因的剔除.以急性白血病亚型分类特征基因选取为例进行实验,结果表明了上述方法的可行性和有效性.  相似文献   

15.
J. Li  X. Tang  J. Liu  J. Huang  Y. Wang 《Pattern recognition》2008,41(6):1975-1984
Various microarray experiments are now done in many laboratories, resulting in the rapid accumulation of microarray data in public repositories. One of the major challenges of analyzing microarray data is how to extract and select efficient features from it for accurate cancer classification. Here we introduce a new feature extraction and selection method based on information gene pairs that have significant change in different tissue samples. Experimental results on five public microarray data sets demonstrate that the feature subset selected by the proposed method performs well and achieves higher classification accuracy on several classifiers. We perform extensive experimental comparison of the features selected by the proposed method and features selected by other methods using different evaluation methods and classifiers. The results confirm that the proposed method performs as well as other methods on acute lymphoblastic-acute myeloid leukemia, adenocarcinoma and breast cancer data sets using a fewer information genes and leads to significant improvement of classification accuracy on colon and diffuse large B cell lymphoma cancer data sets.  相似文献   

16.
肿瘤基因表达谱分类特征基因选取问题及分析方法研究   总被引:18,自引:1,他引:18  
对肿瘤分类特征基因选取问题的研究是发现肿瘤特异表达基因、研究肿瘤基因表达模式的重要手段,文中基于多类别肿瘤基因表达谱数据集,从研究肿瘤与正常组织的分类入手,对肿瘤分类特征基因选取问题进行分析和研究,首先对基于Relief算法的特征选取策略加以改进生成候选特征集合;然后以支持向量机作为分类器对其分类性能进行检验以选取分类特征基因;最后结合分类模型。利用灵敏度分析方法进行特征基因的精确搜索以滤除冗余,基于该方法文中选出了52个具有良好分类性能的特征基因作为肿瘤的基因特征,并对其表达行为进行了简要分析。  相似文献   

17.
BackgroundThe application of microarray data for cancer classification is important. Researchers have tried to analyze gene expression data using various computational intelligence methods.PurposeWe propose a novel method for gene selection utilizing particle swarm optimization combined with a decision tree as the classifier to select a small number of informative genes from the thousands of genes in the data that can contribute in identifying cancers.ConclusionStatistical analysis reveals that our proposed method outperforms other popular classifiers, i.e., support vector machine, self-organizing map, back propagation neural network, and C4.5 decision tree, by conducting experiments on 11 gene expression cancer datasets.  相似文献   

18.
一种基于微阵列数据的集成分类方法*   总被引:1,自引:0,他引:1  
针对现有的微阵列数据集成分类方法分类精度不高这一问题,提出了一种Bagging-PCA-SVM方法。该方法首先采用Bootstrap技术对训练样本集重复取样,构成大量训练样本子集,然后在每个子集上进行特征选择和主成分分析以消除噪声基因与冗余基因;最后利用支持向量机作为分类器,采用多数投票的方法预测样本的类属。通过三个数据集进行了测试,测试结果表明了该方法的有效性和可行性。  相似文献   

19.
Since the introduction of DNA microarray technology, there has been an increasing interest on clinical application for cancer diagnosis. However, in order to effectively translate the advances in the field of microarray-based classification into the clinic area, there are still some problems related with both model performance and biological interpretability of the results. In this paper, a novel ensemble model is proposed able to integrate prior knowledge in the form of gene sets into the whole microarray classification process. Each gene set is used as an informed feature selection subset to train several base classifiers in order to estimate their accuracy. This information is later used for selecting those classifiers comprising the final ensemble model. The internal architecture of the proposed ensemble allows the replacement of both base classifiers and the heuristics employed to carry out classifier fusion, thereby achieving a high level of flexibility and making it possible to configure and adapt the model to different contexts. Experimental results using different datasets and several gene sets show that the proposal is able to outperform classical alternatives by using existing prior knowledge adapted from publicly available databases.  相似文献   

20.
基于DNA微阵列数据的癌症分类问题研究进展   总被引:1,自引:1,他引:0  
应用DNA微阵列数据对癌症进行诊断与分型,已经逐渐成为生物信息学领域的研究热点之一。首先概述了基于微阵列数据的癌症分类问题的研究现状与发展趋势。然后简要介绍了微阵列实验的基本步骤,微阵列数据的结构、特点以及用于癌症分类的基本流程。接下来重点从数据预处理、特征基因选择、分类器设计以及分类性能评价等几方面对近10年来的研究成果进行了详细的综述与比较分析。最后,对该领域目前仍然存在的问题进行了归纳并对未来可能的研究方向作出了预测与展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号