首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
制备了一种基于电还原石墨烯(ERGO)、金纳米粒子(Au NPs)修饰玻碳电极的电化学DNA传感器,应用于大肠杆菌O157:H7的快速、灵敏检测.首先将滴加在玻碳电极表面的氧化石墨烯进行电还原,然后通过电沉积方法将金纳米粒子均匀平铺在电极表面.利用金纳米粒子和氨基之间的共价键作用将端氨基修饰的探针DNA固定在电极表面,完成电化学DNA传感器的制备,并对目标DNA进行了定性与定量检测.实验结果表明:所制备的传感器具有良好的选择性、准确性,并且操作简单易行,对目标DNA的检测限为7.735×10~(-13)mol/L,检测范围为1×10~(-12)~1×10~(-8) mol/L.  相似文献   

2.
采用层层自组装方法制备了纳米TiO2/β-CD膜光电化学传感器,研究了传感器的光电流响应信号与吸附在电极表面的有机物浓度之间的关系。以邻苯二甲酸氢钾作为检测物质,考察了纳米Ti O2/β-CD薄膜的光催化氧化行为。实验结果表明,该传感器的光电流信号与待测物浓度在4.6~138 mg.L-1范围内呈良好的线性关系,线性方程为ΔIphoto(μA)=0.004 52+0.021 4c(mg.L-1),线性相关系数为0.994 6,检测限为1.8 mg.L-1(信噪比为3)。该方法具有检测速度快,成本低,结果稳定等优点,具有较好的应用前景。  相似文献   

3.
采用MEMS工艺及C-MEMS工艺制备碳微电极,在其上修饰纳米氧化钌RuOx颗粒后,表现出对胰岛素的电催化氧化特性,可实现胰岛素的电化学检测。以此构建的微型电化学胰岛素传感器,具有较好的电化学性能,其检测灵敏度为 1 nA/μM,检测限为800 nM。该传感器结合流动注射分析系统,可获得稳定的测量,且所需样品量少,易实现长时、连续检测,具有潜在的临床应用价值,也可构建细胞传感器,在胰腺β细胞分泌胰岛素的机理研究中具有良好的应用前景。  相似文献   

4.
采用循环伏安法制备了钯纳米粒子-Nafion修饰玻碳电极(Pd/Nf/GCE)的甲醛电化学传感器,并采用循环伏安法(CV)和微分脉冲伏安法(DPV)研究了甲醛在该修饰电极上的电催化氧化作用.对修饰电极制备条件和实验条件进行了优化,在此基础上建立了一种测定甲醛的伏安分析方法.实验结果表明,甲醛在该传感器上的催化氧化作用显著;在0.1 mol/L NaOH溶液中,甲醛的氧化峰电流与其浓度在5.0μmol/L~5.0 mmol/L呈良好的线性关系,线性回归方程为:ip=7.69+2.22×104c,相关系数γ=0.996 7,检测限为1.0μmol/L,具有良好的重现性和回收率.  相似文献   

5.
采用循环伏安法制备了钯纳米粒子-Nation修饰玻碳电极(Pd/Nf/GCE)的甲醛电化学传感器,并采用循环伏安法(CV)和微分脉冲伏安法(DPV)研究了甲醛在该修饰电极上的电催化氧化作用.对修饰电极制备条件和实验条件进行了优化,在此基础上建立了一种测定甲醛的伏安分析方法.实验结果表明,甲醛在该传感器上的催化氧化作用显著;在0.1mol/LNaOH溶液中,甲醛的氧化峰电流与其浓度在5.0μmol/L-5.0mmol/L呈良好的线性关系,线性叫归方税为:ip=7.69+2.22×10^4c,相关系数Y=0.9967,检测限为1.0μmol/L,具有良好的重现性和回收率.  相似文献   

6.
以电化学还原预吸附在活化玻碳电极表面层上的PtCl62-,制备铂纳米粒子。利用X-光电子能谱(XPS)、场发射扫描电镜(FE-SEM)和电化学方法研究了电极表面的性质。在大量抗坏血酸存在下,利用修饰电极实现了对多巴胺的检测,显示了良好的稳定性和灵敏度。传感器对多巴胺的线性检测范围在5.0×10-8~2.2×10-5 mol/L,检测限为1.0×10-8 mol/L。通过研究发现,多巴胺在修饰电极表面的电化学行为是典型的吸附控制过程。该传感器具有良好的灵敏度、稳定性、重复性和抗干扰性能。  相似文献   

7.
免疫传感器是生物传感器家族中的一个新成员,它有两个基本组成部分:敏感源(抗体或抗原)和信号转换器。其中常见的信号转换器有电化学信号转换器,质量信号转换器,热量信号转换器和光学信号转换器。本文将从生物传感器的基本结构入手,集中讨论电化学信号转换器在免疫传感器中的应用。  相似文献   

8.
以bulk类石墨相氮化碳为前驱体,氨水为溶剂,通过水热法制备了超薄氮化碳,并成功构建了五氯酚(PCP)高灵敏的电化学传感器。对碱源和剥离时间等制备条件进行了优化,结果表明:氮化碳在以弱碱氨水为溶剂时能成功地剥离,然而在有机弱碱为溶剂的情况下导致氮化碳大量溶解而未能成功剥离。另外,剥离时间对氮化碳的形貌和成分影响非常大。剥离6 h后得到管状形貌且有蜜勒胺生成的混合物。而剥离4 h则可得到纯的超薄氮化碳,其禁带宽度Eg为2.641 eV,价带EVB为1.774 V,所构建的超薄氮化碳电化学传感器的阻抗最小,用于环境激素PCP的检测,其线性范围为3.1×10-7~1.1×10-4 mol·L-1,检出限为100 nmol·L-1,建立了一种灵敏、快速简便的PCP电化学检测新方法。  相似文献   

9.
在0.20 mol.L-1pH 5.0 NaAc-HAc缓冲溶液中,运用电化学方法和荧光光谱分析法研究了硫堇与鲑鱼精DNA的相互作用。硫堇与DNA作用后,氧化还原峰电流减小,峰电位正移,溴化乙锭(EB)-DNA体系在加入硫堇后出现荧光猝灭的现象。结果表明,硫堇与DNA的结合方式主要为嵌插作用。以硫堇为电化学杂交指示剂,制得了一种DNA电化学生物传感器,该传感器具有良好的选择性,靶DNA在11.3~121 nmol.L-1范围内具有良好的线性关系,线性相关系数0.997 1,检测限为5.26 nmol.L-1(3σ,n=7)。  相似文献   

10.
为解决电化学生物传感器在液流式小样品检测时,由于微反应器腔体通道高度对电极双电层及扩散动力学的影响,造成测量不稳定的问题,提出一种新的电化学生物传感器.以小样品通道流体动力学及扩散动力学的分析为基础,推导静止液体非稳态扩散过程平面电极扩散层最小厚度,以此为依据设计制作2种不同腔体高度的葡萄糖氧化酶电极微反应器,与开放式无腔的葡萄糖氧化酶电极微反应器一起进行对比试验,实验结果证明,只有当腔体高度大于静止液体非稳态扩散过程平面电极扩散层最小厚度时,扩散作用在非稳态过程中不被外界干扰,酶促反应才能正常进行.  相似文献   

11.
以癌胚抗原(CEA)为检测目标构建CEA电化学免疫传感器:壳聚糖为生物活性膜,纳米金和生物素标记的辣根过氧化物酶为放大元,CEA、链霉亲和素标记的癌胚抗体免疫反应形成的复合物为固定的酶标免疫复合物,并对检测条件进行了优化。通过竞争性酶联免疫法检测不同浓度CEA的电化学响应。结果表明,该新型免疫传感器表现出良好的线性范围(4~16 ng/mL,R2=0.992 7),检测限为1 ng/mL。  相似文献   

12.
以金属铅为基体电极,用电化学氧化手段修饰铅电极表面,制备了铅基PbSO4化学修饰的电极。实验表明,该修饰电极在选定条件下,对SO4^2-离子有近似能斯特响应,是一种的SO4^2-电化学传感器,并将该电极用于水泥试样中SO3的测定。  相似文献   

13.
壳聚糖;苯甲酰化;手性分离材料;高效液相色谱;手性识别  相似文献   

14.
15.
土霉素(OTC)作为一种广谱类抗生素,被广泛用于畜禽养殖和水产养殖业.大量排放到水体和土壤中的OTC会在环境中不断积累,危害生态环境和人类健康.利用分子印迹技术,以邻苯二胺为功能单体,使用电聚合法在氧化石墨烯-聚乙烯亚胺复合材料(RGO-PEI)修饰的玻碳电极表面合成OTC分子印迹聚合物薄膜,制备OTC分子印迹电化学传...  相似文献   

16.
我国电化学生物传感器的研究进展   总被引:1,自引:0,他引:1  
介绍电化学生物传感器的基本原理及分类;阐述电化学生物传感器的发展历程;综述近三年来电化学生物传感器中研究最为广泛的电流型生物传感器的应用.  相似文献   

17.
DNA电化学生物传感器的研究进展   总被引:1,自引:0,他引:1  
介绍了DNA电化学生物传感器的组成及原理,综述了近年来单链DNA的固定以及杂交信号的电化学检测方面的研究进展,探讨了纳米材料、纳米技术在DNA电化学生物传感器的制备及应用中发挥的作用,并对DNA电化学生物传感器的发展方向进行了展望.  相似文献   

18.
以氯铂酸(H2PtCle·6H2O)为铂源,以PEG(聚乙二醇,聚合度为227)为还原剂,采用水热法制得高分散Pt/C催化材料。使用TEM、XRD及EDS对其进行了袁征,并对催化剂的电化学活性面积进行循环伏安法研究。结果表明:通过调节反应条件可以得到高分散Pt/C催化剂,Pt粒子粒径约为5nm,尺寸均一;Pt/C催化剂的分散性越好,其电化学性能就越高。  相似文献   

19.
采用电化学沉积的方法制备了金纳米粒子修饰的泡沫镍电极,基于葡萄糖在AuNPs/泡沫镍电极上的电化学氧化制备了无酶葡萄糖传感器。通过扫描电子显微镜对金纳米粒子修饰的泡沫镍电极的表面形貌进行了表征,并对氯金酸的浓度、沉积圈数、pH值等实验条件进行了优化设计。在最佳实验条件下传感器对葡萄糖的线性响应范围为2.0×10-7~1.0×10-5 mol·L-1,检出限为7.6×10-8 mol·L-1。传感器制备简单,无需特殊条件保存。  相似文献   

20.
以磺化沥青(sulfonsted bitumen, SP)作为碳源,通过纯化和高温碳化法制备碳纳米颗粒(carbon nanoparticles, CNPs),将CNPs分散在壳聚糖(chitosan, CS)溶液中,并用滴涂法修饰在金电极(Au)上来得到CNPs-CS/Au。以阿奇霉素(azithromycin, AZM)为模板分子、多巴胺(dopamine, DA)为功能单体,利用电聚合法在CNPs-CS/Au电极上制备了AZM分子印迹薄膜,构建了高灵敏度且专一性识别AZM分子的电化学传感器(MIP/CNPs-CS/Au)。分别采用扫描电镜(scanning electron microscope, SEM)、X-射线衍射(X-ray diffraction, XRD)、X-射线光电子能谱(Xray photoelectron energy spectroscopy, XPS)、循环伏安法(cyclic voltammetry, CV)、电化学阻抗法(electrochemical impedance method, EIS)和差示脉冲阳极溶出伏安法(differential pu...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号