首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为进一步提高HTPB推进剂的能量并抑制铝粉在燃烧过程中的团聚,制备了铝粉质量分数为16%~22%的端羟基聚丁二烯(HTPB)推进剂,并分别加入含氟有机化合物(OF)作为铝燃烧促进剂,研究了铝含量和OF对HTPB推进剂燃烧性能的影响;使用氧弹量热仪测定了推进剂在氩气氛围下(3 MPa)的爆热;收集在3 MPa下推进剂燃烧的凝聚相产物,采用激光粒度仪、X射线光电子能谱仪(XPS)及X射线衍射仪(XRD)等分别对其进行粒度分布、元素和物相分析;通过线扫描摄像机和高压燃烧室系统测定推进剂的燃速;利用高速摄影系统观察推进剂燃面上熔铝粒子的团聚过程。结果表明,HTPB推进剂在铝粉质量分数为20%时实测爆热最大,含氟有机物OF的引入使得爆热有所下降;随着HTPB推进剂中铝含量的提高,燃面上熔铝粒子的团聚愈加严重,凝聚相燃烧产物的尺寸和残留铝含量均逐渐增加;加入含氟有机物OF能够促使-Al2O3和AlF3的生成,有效抑制铝颗粒在燃烧过程中的团聚,使凝聚相燃烧产物的尺寸和残留铝含量显著降低,当铝粉质量分数为20%时,OF的加入使得残留铝的生成率降低了50%;较低的铝含量和OF的添加有利于HTPB推进剂燃速的提高。  相似文献   

2.
为改善高氯酸铵(AP)的性能,从而改善复合固体推进剂的燃烧性能,采用AP辅助的金属有机骨架结构(MOF)热分解法合成纳米ZnO立方体催化剂(n-ZnO/cube);采用XRD、FESEM、TEM等对其形貌进行了表征,分析了其比表面积和孔径分布;采用TG-DTA分析了其对AP热分解的影响;将其加入到HTPE推进剂中,测试了其对推进剂工艺性能、安全性能、力学性能及燃烧性能的影响。结果表明,n-ZnO/cube催化剂具有大的比表面积(70.5m2/g)和大量的孔道结构,将AP热分解的高温分解峰从413℃降至279℃,放热量从584J/g增至1520J/g,分解活化能从151.1kJ/mol降至65.3kJ/mol;将质量分数2%的n-ZnO/cube加入到HTPE推进剂中,推进剂的燃速(20℃,6.86MPa)从12.01mm/s提高到16.16mm/s,工艺性能、安全性能、力学性能、燃速压强指数(0.42,20℃,3~16MPa)、燃速温度敏感系数(2.02×10-3-1,-55~70℃,6.86MPa)均未受到明显影响,表明纳米ZnO立方体结构对AP热分解表现出良好的催化性能,是HTPE推进剂的一种具有潜力的燃烧调节剂。  相似文献   

3.
ACP对无烟改性双基推进剂能量和燃烧性能的影响   总被引:1,自引:1,他引:0  
含ACP的无烟改性双基推进剂能量特性理论计算表明,ACP对推进剂的能量影响较小。研究了不同工艺对含ACP无烟改性双基推进剂燃烧性能的影响。实验结果表明,ACP对压伸工艺制备的推进剂燃速没有显著提高,但能大幅度地提高浇铸无烟改性双基推进剂的燃速。分析了ACP提高无烟改性双基推进剂燃速的作用机理,认为ACP可增加燃烧表面积和热量向燃烧表面积的反馈,使推进剂的燃速大增。  相似文献   

4.
The combustion wave structure and thermal decomposition process of azide polymer were studied to determine the parameters which control the burning rate. The azide polymer studied was glycidyl azide polymer (GAP) which contains energetic – N3 groups. GAP was cured with hexamethylene diisocyanate (HMDI) and crosslinked with trimethylolpropane (TMP) to formulate GAP propellant. From the experiments, it was found that the burning rate of GAP propellant is significantly high even though the adiabatic flame temperature of GAP propellant is lower than that of conventional solid propellants. The energy released at the burning surface of GAP propellant is caused by the scission of N N2 bond which produces gaseous N2. The heat flux transferred back from the gas phase to the burning surface is very small compared with the heat generated at the burning surface. The activation energy of the decomposition of the burning surface of GAP propellant, Es, is determined to be 87 kJ/mol. The burning rate is represented by r = 9.16 × 103 exp(–Es/RTs) where r (m/s) is burning rate, Ts (K) is the burning surface temperature, and R is the universal gas constant. The observed high temperature sensitivity of burning rate is correlated to the relationship of (∂Ts/∂T0)p = 0.481 at 5 MPa, where T0 is the initial propellant temperature.  相似文献   

5.
The thermal decomposition process and combustion wave structure of azide polymer were studied to determine the parameters which control the burning rate. The azide polymer studied was 3-azidomethyl-3-methyl oxetane (AMMO) which contains energetic –N3 groups. From the experiments, it was found that the thermal decomposition process of AMMO consists of a two-stage weight loss process: the first-stage corresponds to an exothermic reaction which is caused by the scission of N-N2 bond, and the second-stage corresponds to the decomposition of the remaining fragments. The burning rate of AMMO is approximately 50% of the burning rate of GAP propellant and is as high as that of conventional double base propellant. The heat feedback from gas phase to the burning surface increase with increasing pressure. The burning surface temperature and the heat of reaction at the surface decrease with increasing pressure.  相似文献   

6.
In order to obtain a better understanding of the combustion characteristics of ammonium nitrate (AN) and carbon (C) mixtures (AN/C), burning tests and differential scanning calorimetry (DSC) were performed. AN mixed with carbon that is oxidized by nitric acid (HNO3), such as activated carbon (AC), burned at 1 MPa. However, AN mixed with carbon that is not oxidized by HNO3, such as graphite, did not burn under 7 MPa. Compositions with more than stoichiometric amounts of activated carbon had higher burning rates. Heat characteristic examinations found a similar trend. The burning rate of AN/AC mixed with CuO as a combustion catalyst deteriorated faster than an additive‐free one. From the DSC result, AN/AC/CuO had a higher onset temperature and a lower heat of reaction than AN/AC. These results suggested that, in the combustion wave of AN/C, a thermal decomposition zone is formed on the burning surface, and combustion performance was affected by the thermal decomposition of AN/C.  相似文献   

7.
Burning rate measurements were carried out for ammonium perchlorate/hydroxyl‐terminated polybutadiene (AP/HTPB) composite propellants with iron (Fe) nanoparticles as additives. Experiments were performed in a strand burner at pressures from 0.2 to 10 MPa for propellants containing approximately 80 % AP and Fe nanoparticles (60–80 nm) at concentration from 0 to 3 % by weight. It was found that the addition of 1 % Fe nanoparticles increased burning rate by factors of 1.2–1.6. Because Fe nanoparticles are oxidized on the surface and have high surface‐to‐volume ratio, they provide a large surface area of Fe2O3 for AP thermal decomposition catalysis at the burning propellant surface, while also providing added energy release due to the oxidation of nanoparticle sub‐shell Fe. The increase in burning rate due to Fe nanoparticle content is similar to the increase in burning rate caused by the addition of iron oxide (Fe2O3) particles observed in prior literature.  相似文献   

8.
The burning rate characteristics of the propellant containing TiH2 have been examined in order to understand the effect of TiH2 addition on the combustion wave structure. The burning rate increases and the pressure exponent of burning rate decreases as the addition of TiH2 increases. Using very fine thermocouples which were embedded within the propellant samples, the heat transfer process in the combustion wave was determined. The results indicate that the heat flux feedback from the gas phase to the burning surface increases when TiH2 is mixed within the propellants.  相似文献   

9.
新型高能高强度JMZ发射药的燃烧特性   总被引:1,自引:1,他引:0  
为探索混合硝酸酯增塑的聚醚聚氨酯黏合剂体系的新型发射药的燃烧性能,通过密闭爆发器常规实验和高压实验.研究分析了JMZ发射药在不同压力范围的燃烧特性。结果表明,JMZ发射药在低压下的燃速压力指数较大,具有高含量RDX硝胺发射药的共同特征,但在高压下的燃速压力指数逐渐变小,与制式发射药相当,在燃速压力指数的变化过程中不存在明显的转折现象。另外,JMZ发射药在起始阶段表现出了良好的燃烧渐增性,对身管武器的应用是十分有利的。  相似文献   

10.
为研究亚大气压下高氯酸铵/端羟基聚丁二烯(AP/HTPB)的燃烧特性,采用三步反应动力学机理,建立二维三明治模型,耦合气固两相;对20~80kPa下AP/HTPB的微尺度燃烧进行模拟,并与高压下(4MPa)AP/HTPB燃烧特性差异进行对比。结果表明,亚大气压下BDP模型中第一步反应靠近燃面,放热量较大,在AP/HTPB推进剂燃烧过程中占主导地位;燃烧环境压强不同,导致火焰的特性不同,亚大气压下火焰中扩散与混合过程共存,高压下为扩散火焰;相比于高压,亚大气压火焰离燃面远,面积大;由于高低压下放热区域及放热率差异导致气固相温度分布不同,从而影响燃面形状,亚大气压下AP与HTPB交界处相对于整个燃面突出,而高压下交界处相对于整个燃面凹陷。  相似文献   

11.
Ammonium nitrate (AN)‐based composite propellants have several major problems, namely, a low burning rate, poor ignitability, low energy, and high hygroscopicity. The addition of a burning catalyst proved to be effective in improving the burning characteristics of AN‐based propellants. In this study, the burning characteristics of AN‐based propellants supplemented with MnO2 as a burning catalyst were investigated. The addition of MnO2 is known to improve the ignitability at low pressure. The most effective amount of MnO2 added (ξ) for increasing the burning rate is found to be 4 %. The increasing ratio with ξ is virtually independent of the burning pressure and the AN content. However, the pressure exponent unfortunately increased by addition of MnO2. The apparent activation energy of the thermal decomposition for AN and the propellant is decreased by addition of MnO2. From thermal decomposition kinetics it was found that MnO2 could accelerate the thermal decomposition reaction of AN in the condensed phase, and therefore, the burning characteristics of the AN‐based propellant are improved.  相似文献   

12.
研究了硼氢化合物 B1 2 H1 2 [N(C2 H5 ) 4] 2 对 NEPE推进剂燃烧性能的影响 ,采用 DSC分析了 B1 2 H1 2 [N(C2 H5 ) 4] 2 与 NEPE推进剂主要组分硝酸酯的相容性以及对推进剂固化反应的催化作用和对高氯酸铵、硝胺常压热分解的催化作用 ,并利用恒压静态燃速仪测试了推进剂在 4~ 1 1 MPa的燃烧速度和燃速压力指数  相似文献   

13.
胶黏固结发射药的燃烧性能   总被引:3,自引:0,他引:3  
以变燃速发射药为基体,用含能胶黏剂对其药粒表面微胶化处理,压实固结,制成胶黏固结整体变燃速发射药,解决固结装药的燃烧渐增性问题。将高装填密度和变燃速发射药的燃速渐增特性结合在一起,可有效控制高装填密度发射药的燃气释放。由密闭爆发器实验得出变燃速发射药和胶黏固结药的p-t和L-B曲线,并对两种发射药曲线进行对比分析。结果表明,胶黏固结发射药基本保持变燃速发射药的高燃烧渐增性,具有高装填密度和燃烧再现性。  相似文献   

14.
内弹道稳定剂对中高燃速RDX-CMDB推进剂燃烧性能的影响   总被引:1,自引:0,他引:1  
以一种中高燃速改性双基推进剂配方为基础配方,添加不同粒度的Al_2O_3及不同品种的内弹道稳定剂,研究了6~20MPa下推进剂燃速和燃速压强指数的变化规律,并对其燃烧机理进行了分析。结果表明,添加Al_2O_3后推进剂的燃速降低,且随着压强的升高,燃速降低的幅度减小;不同品种的内弹道稳定剂对燃速及燃速压强指数降低和提高的幅度不同,TiO2提高了推进剂高压段的燃速,MgO几乎不影响推进剂燃速,而Al_2O_3、ZrO_2均降低了推进剂的燃速。添加不同粒度的Al_2O_3后,均使燃烧表面的催化剂含量(浓度)降低,改变了催化剂的催化效率,从而导致添加芳香铅A催化剂的推进剂中Al_2O_3粒径分别为10μm和2.5μm时,燃速相应降低0.25mm/s和1.25mm/s。不同品种的内弹道稳定剂对燃烧表面催化剂含量、分散均匀性、催化活性的影响不同,TiO_2、MgO的活性高于Al_2O_3和ZrO_2,从而表现出添加TiO_2、MgO的推进剂燃速高于添加Al_2O_3、ZrO_2的推进剂。  相似文献   

15.
Electro‐thermal‐chemical (ETC) initiation and combustion offers the possibility to increase the performance of guns substantially as new propellant formulations and high loading densities (HLD) can be safely ignited and burnt in an augmented way. This paper reports investigations of burning phenomena in the low pressure region for JA2 and the effects of plasma interaction on ignition and study its influence on the burning rate. The comparison of transparent and opaque versions of the propellant is of special interest. Electrically produced plasma can strongly influence the ignition and combustion of solid propellants. Predominantly, plasma arcs influence strongly the burning of propellants by its radiation. The high intensity of the radiation initiates burning with short time delays in the µs‐range and high conversion during exposure also in the case of a stable burning. Radiation can penetrate into the propellant interior and partially fragment at absorbing structures which could be artificially introduced or be inherently present as in the case of a JA2 propellant. Simplified approaches based on the heat flow equation and radiation absorption can explain these effects at least on a qualitative scale. Dynamic effects are understood by more sophisticated models.  相似文献   

16.
采用DSC研究了不同形貌的铅盐催化剂CH-Ⅰ和CH-Ⅱ对AP热分解行为的影响,获得了其热分解反应的动力学参数,并考察了催化剂对GAP少烟推进剂燃烧性能的影响。结果表明,铅盐催化剂能够降低AP的低温分解反应活化能,提高高温分解反应速率。在GAP少烟推进剂中,加入铅盐催化剂CH-Ⅰ和CH-Ⅱ,能够显著提高其高压下的燃速,15~25MPa内的压强指数分别由不加催化剂时的0.46降至0.35和0.34。AP的热分解行为与GAP少烟推进剂燃烧紧密相关。AP热分解反应的加快是推进剂燃速提升的主要原因,催化剂的催化活性与其形貌和粒度有关。催化剂CH-Ⅱ的催化效果优于催化剂CH-Ⅰ。  相似文献   

17.
Most solid rockets are powered by ammonium perchlorate (AP) composite propellant including aluminum particles. As aluminized composite propellant burns, aluminum particles agglomerate as large as above 100 μm diameter on the burning surface, which in turn affects propellant combustion characteristics. The development of composite propellants has a long history. Many studies of aluminum particle combustion have been conducted. Optical observations indicate that aluminum particles form agglomerates on the burning surface of aluminized composite propellant. They ignite on leaving the burning surface. Because the temperature gradient in the reaction zone near a burning surface influences the burning rate of a composite propellant, details of aluminum particle agglomeration, agglomerate ignition, and their effects on the temperature gradient must be investigated. In our previous studies, we measured the aluminum particle agglomerate diameter by optical observation and collecting particles. We observed particles on the burning surface, the reaction zone, and the luminous flame zone of an ammonium perchlorate (AP)/ammonium nitrate (AN) composite propellant. We confirmed that agglomeration occurred in the reaction zone and that the agglomerate diameter decreased with increasing the burning rate. In this study, observing aluminum particles in the reaction zone near the burning surface, we investigated the relation between the agglomerates and the burning rate. A decreased burning rate and increased added amount of aluminum particles caused a larger agglomerate diameter. Defining the extent of the distributed aluminum particles before they agglomerate as an agglomerate range, we found that the agglomerate range was constant irrespective of the added amount of aluminum particles. Furthermore, the agglomerate diameter was ascertained from the density of the added amount of aluminum particles in the agglomerate range. We concluded from the heat balance around the burning surface that the product of the agglomerate range and the burning rate was nearly constant irrespective of the added amount of aluminum particles. Moreover, the reduced burning rate increased the agglomerate range.  相似文献   

18.
A high‐pressure combustor and a metal/steam reactor were used to simulate the two‐stage combustion of a fuel‐rich propellant used for water ramjet engines. The solid combustion products from the two stages were collected and characterized by scanning electron microscopy (SEM) and X‐ray diffraction (XRD). In addition, the thermal properties of the solid products of the primary combustion were characterized by differential thermal analysis (DTA) and simultaneous thermogravimetry (TG). The burning rates at different pressures were measured and the secondary combustion process in hot steam was monitored by high‐speed cinematography. The results showed that the propellant has a good combustion performance and a high burning rate. After primary combustion, the solid product mainly contained magnesium, magnesia, magnesium chloride, and carbon. During the secondary combustion, the ignition temperature was approximately 720 °C, and two burning stages were observed. The rest of magnesium hasn’t completely reacted with hot steam until the temperature reached a value higher than 800 °C for 30 min.  相似文献   

19.
A comparison of various experimental results for combustionrelated properties evaluation, including burning rates, deflagration heat, flame structures and thermal decomposition properties, of AP/RDX/Al/HTPB composite propellants containing nano metal powders is presented. The thermal behavior of n‐Al (nano grain size aluminum) and g‐Al (general grain size aluminum i.e., 10 μm) heated in air was also investigated by thermogravimetry. The burning rates results indicate that the usage of bimodal aluminum distribution with the ratio around 4 : 1 of n‐Al to g‐Al or the addition of 2% nano nickel powders (n‐Ni) will improve the burning behavior of the propellant, while the usage of grading aluminum powders with the ratio 1 : 1 of n‐Al to g‐Al will impair the combustion of the propellant. Results show that n‐Al and n‐Ni both have a lower heating capacity, lower ignition threshold and shorter combustion time than g‐Al. In addition n‐Al is inclined to burn in single particle form. And the thermal analysis results show that n‐Ni can catalyze the thermal decomposition of AP in the propellant. The results also confirm the high reactivity of n‐Al, which will lead to a lower reaction temperature and rather higher degree of reaction ratio as compared with g‐Al in air. All these factors will influence the combustion of propellants.  相似文献   

20.
Nitramines are known to produce lower burning rates and higher pressure exponent (η) values. Studies on the burning rate and combustion behavior of advanced high‐energy NG/PE‐PCP/HMX/AP/Al based solid propellant processed by slurry cast route were carried out using varying percentages of HMX and AP. It was observed that propellant compositions containing only AP and Al loaded (total solids 75 %) in NG plasticized PE‐PCP binder produce comparatively lower pressure exponent (η) values similar to AP‐Al filled HTPB based composite propellants. However, energetic propellants containing high level of nitramine (40–60 %) produce high pressure exponent (0.8–0.9) values in the same pressure range. Incorporation of fine particle size AP (ca. 6 μm) and change in its concentration in the propellant composition reduces η value marginally and influences the burning rate. However, such compositions have higher friction sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号