首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解决处理含铜重金属废水时成本高和效率低等问题,选用廉价且吸附性能较好的吸附剂成为研究中的热点问题。文章以稻壳为原料制备稻壳灰吸附剂,通过单因素实验研究Cu2+质量浓度、pH值、吸附剂投加量、时间、温度等对吸附效果的影响;通过正交实验得出吸附Cu2+的最佳条件;通过扫描电镜及红外光谱测定,对吸附前后的稻壳灰进行表征分析。实验结果表明:溶液pH对吸附效果影响极大,当4≤pH≤6时,吸附率较高,pH过低或过高均不利于吸附;在前0.5 h内吸附速度很快,1 h后吸附基本完成。稻壳灰吸附Cu2+的最佳条件为:稻壳灰投加量20.0 g/L、35 ℃、Cu2+质量浓度30 mg/L、吸附时间1 h、溶液初始pH为6。准二级动力学模型和Langmuir等温吸附模型可较好地描述稻壳灰对Cu2+的吸附过程。  相似文献   

2.
利用香蕉皮制成吸附剂,对含有Pb2+的模拟废水进行吸附。分别对吸附剂粒径、pH值、废水中Pb2+初始浓度、吸附时间及吸附剂投加量条件对吸附程度进行考察。实验结果表明,香蕉皮吸附的最佳条件为:香蕉皮粒径为100目,pH=5,废水中Pb2+浓度50mg/L,吸附时间为90min,香蕉皮投加量为0.5g,最高吸附量为9.16 mg/g,在此条件下,100mL水样,30℃条件下,香蕉皮对Pb2+吸附率在90%以上。  相似文献   

3.
啤酒废酵母对Pb2+的吸附   总被引:4,自引:0,他引:4  
为了开发新型生物吸附剂, 研究了啤酒废酵母对Pb2 +的生物吸附能力。初步确定了啤酒废酵母对Pb2 +的最佳吸附条件, 起始pH 为5, Pb2 +的起始质量浓度为50 mg/ L, 酵母的质量浓度为1 g/ L, 吸附温度为30 ℃,吸附时间为60 min , 在此条件下啤酒废酵母对Pb2 +的吸附率可达93.50 %。对吸附了Pb2 +的啤酒废酵母进行解吸实验, 表明浓度为1 mol/ L 的HCl 为较好的解吸剂, 其解吸率可达54.59 %。通过计算分析表明, 啤酒废酵母对Pb2 +的吸附符合Langmuir 吸附模型和Freundlich 吸附模型, 且符合Langmuir 吸附模型的程度更优。最后对未吸附Pb2 +的空白酵母和吸附Pb2 +的酵母进行了红外光谱分析, 比较了啤酒废酵母吸附Pb2 +前后的变化。  相似文献   

4.
采用静态吸附试验确定生物炭吸附的最适宜温度、振荡速度、亚甲基蓝初始浓度、生物炭投加量及吸附时间的范围,选择吸附温度、亚甲基蓝初始浓度、生物炭的投加量进行正交实验,得到最优吸附工艺条件:反应温度35℃,生物炭的投加量0.4g,亚甲基蓝的浓度45mg/L,生物炭对亚甲基蓝的去除率98.6%,吸附量5.54mg/g.最优条件下的动力学研究表明亚甲基蓝溶质分子在两相界面上进行的吸附达到平衡时,亚甲基蓝浓度与生物炭的吸附量之间符合Freundlich吸附等温线.吸附动力学特性符合准二级吸附动力学,生物炭对于亚甲基蓝的吸附以化学吸附为速率控制步骤.  相似文献   

5.
资源环境问题一直受到人们的广泛关注,农业废弃物玉米秸秆可以用来提取油气,副产物生物炭预期能够用于环境治理。在600℃条件下,通过简单的限氧热解法制备得到玉米秸秆生物炭,将其用于吸附去除在高级氧化过程中产生的中间氧化产物——对苯醌,研究了玉米秸秆生物炭的投加量和溶液初始pH值对吸附效果的影响,玉米秸秆生物炭吸附对苯醌的动力学、热力学作用机理,玉米秸秆生物炭的再生利用性能等。研究结果表明:①玉米秸秆生物炭能够高效吸附去除对苯醌,投加量为0.8 g/L时的去除率可达到97.2%。②在较宽的pH值变化范围内(3.0~11.0)均表现出了较高的去除能力,且生物炭和对苯醌之间产生的∏-∏电子供体-受体(∏-∏electron-donor-acceptor interaction)相互作用占主导。③Elovich和准二级动力学模型均能较好地拟合试验动力学数据,表明玉米秸秆生物炭与对苯醌之间可能存在扩散控制的化学吸附过程。④基于Langmuir模型的玉米秸秆生物炭对对苯醌的最大吸附量q_(max)为94.6 mg/g;与Langmuir模型相比,Freundlich模型能够更好地拟合试验热力学数据,且玉米秸秆生物炭对对苯醌的吸附在很大程度上是多分子层吸附过程。⑤多次循环再生后的玉米秸秆生物炭仍具有较好的吸附去除率。  相似文献   

6.
针对地表水体磷污染问题,利用农业废弃物柚子皮为原料制备柚皮生物炭(PB),以十六烷基三甲基溴化铵(CTMAB)为分散剂,制备改性纳米零价铁生物炭吸附材料(CNZVI)。使用扫描电镜、比表面积分析仪和X射线衍射分析仪等手段,研究柚皮生物炭改性前后的理化性能,并分析溶液p H、吸附剂投加量、反应时间、初始浓度和温度对CNZVI-PB吸附水中磷酸盐的影响。结果表明:CNZVI-PB对水中磷酸盐具备较好的吸附去除能力;溶液pH对磷吸附过程影响较大,最优吸附效率的pH值为3.0~7.0;该吸附反应是一个吸热过程,反应过程符合准二级动力学模型,及Langmuir等温吸附模型,在20~40℃时,磷最大吸附量达到8.47~9.62 mg/g。CNZVI-PB对磷酸盐的吸附过程主要包括静电吸附和配位基交换作用。  相似文献   

7.
研究以NaOH为活化剂对凹凸棒土/玉米秸秆(ATP/CS)进行碱改性,在限氧条件下慢速共热解制备凹凸棒土/玉米秸秆生物炭(ATP/CSBC),用于去除水中的四环素(TC)。采用响应曲面法对NaOH浸渍浓度、NaOH浸渍时间、热解温度3种制备影响因素进行优化研究,探讨各因素之间对ATP/CSBC吸附性能的交互影响。通过多种仪器对ATP/CSBC的微观形貌和理化性质进行了分析,同时考察了吸附剂投加量、pH、初始浓度及吸附时间等因素对TC吸附量的影响。实验结果表明,在投加量为0.6 g/L,pH=8,TC初始质量浓度为200 mg/L、吸附时间为240 min时,ATP/CSBC质量比为1∶1时,TC的吸附量最大为177.77 mg/g。ATP/CSBC对TC的吸附更符合Langmuir等温线模型和准二级动力学模型,且颗粒内扩散模型拟合结果表明该扩散行为非吸附过程中唯一限速因素,吸附速率可能由液膜扩散、颗粒内扩散和表面吸附等共同控制。  相似文献   

8.
花生壳生物炭对水中Pb(Ⅱ)的吸附   总被引:2,自引:0,他引:2  
以农业废弃物花生壳为原料制备生物炭,对其表面形貌及孔结构进行了表征,对其吸附水中Pb(Ⅱ)的行为进行了研究.结果表明,花生壳生物炭对Pb(Ⅱ)的吸附在120 min达到平衡,吸附过程符合准二级动力学方程.Langmuir吸附模型能够很好的模拟吸附等温线,最大饱和吸附量为68.22 mg·g-1.吸附热力学结果显示,花生壳生物炭对Pb(Ⅱ)的吸附主要以化学吸附为主,升高温度有利于吸附.  相似文献   

9.
为实现农林废弃物豆秸秆最大价值化利用且有效应用于亚甲基蓝染料废水的吸附,以农林废弃物豆秸秆为原料,采用碱活化炭化-酸刻蚀结合法制备出多孔炭SSC-800。利用拉曼光谱,X射线衍射仪(XRD)和氮气的吸附/脱附对豆秸秆基多孔炭SSC-800进行性能分析,研究了多孔炭SSC-800添加量和溶液pH对吸附效果的影响并剖析炭材料对亚甲基蓝染料的等温吸附模型和动力学模型。结果表明:当原料与活化剂比例仅为1∶2时,制备的SSC-800其比表面积达到2 101.28 m2/g,其中微孔比表面积为1 753.19 m2/g。对亚甲基蓝染料的去除率高达99.6%,最大吸附量可达到1 369.08 mg/g;多孔炭SSC-800对亚甲基蓝染料的吸附符合Langmuir吸附等温模型,属于单分子吸附类型,吸附动力学符合准二级动力学,以化学吸附为主。  相似文献   

10.
采用农业废弃物柚子皮制备活性炭用于吸附去除废水中的磷,研究了溶液中磷的初始浓度、柚皮基活性炭投加量、pH和温度等因素对磷吸附过程的影响。研究结果显示:在pH值为2、6和10时,制备的活性炭样品对磷的吸附量变化不大;在温度20~50℃范围,吸附量变化并不明显(0.60~0.69 mg/g),40℃时,磷的吸附量接近最大值(0.69 mg/g);随着初始浓度的增加,磷的吸附量逐渐增大。吸附数据遵循Freundlich等温吸附模型,吸附过程符合准二级动力学方程。吸附的表观活化能为42.03 kJ/mol,柚皮基活性炭对磷的吸附属于化学吸附。  相似文献   

11.
采用大孔阳离子交换树脂对增甘膦钙溶液进行脱钙处理,重点探讨了该树脂对Ca2+的等温和动力学吸附行为,研究了pH对其吸附性能的影响及树脂的重复使用性,并对钙离子脱除机理进行了研究。结果表明:该树脂对Ca2+的吸附不受溶液初始pH影响,在20 min内即可达到平衡,最大吸附量为52.87 mg/g,且经5次重复利用后,对Ca2+的回收率仍可维持在98.2%以上;该过程符合Langmuir等温吸附模型、准二级动力学模型,另外,该树脂在处理实际增甘膦溶液时可实现钙离子的高效脱除;机理分析表明该树脂对Ca2+吸附以离子交换反应为主。这为复杂有机废液中钙的分离脱除提供了有益的理论参考。  相似文献   

12.
采用聚乙烯醇(PVA)、聚丙烯酰胺(PAM)为原料,戊二醛(glutaraldehyde)为交联剂,制备了一种互穿网络(IPN)水凝胶。用傅立叶红外光谱仪对其结构进行表征,研究了PVA和PAM按不同配比及交联剂的不同用量制备的IPN水凝胶的吸水性和Cu2+的吸附性,主要探讨了吸附时间、pH、吸附温度等对吸附Cu2+的影响,分析了吸附行为及其动力学特性,并对其吸附机理做出了初步探讨。结果表明:在本实验研究范围内,30wt.% PAM含量的PVA-PAM IPN水凝胶在pH=5时对Cu2+的吸附效果最佳;在一定温度范围内,PVA-PAM IPN水凝胶对Cu2+的平衡吸附量随温度升高而增大;吸附行为符合准一级和准二级动力学方程,扩散机制为颗粒内扩散和膜扩散双重作用。  相似文献   

13.
选用Na_2SO_3、FeSO_4两种还原剂制备改性麦秸秆生物炭,以对苯醌为目标污染物,通过试验研究生物炭制备过程中还原剂浸渍时间及浓度、生物炭热解温度及投加量对其吸附去除对苯醌的影响,同时进行热力学分析。结果表明,还原剂浸渍时间宜为2 h、最佳物质的量浓度为0.001 mol/L,生物炭最佳热解温度为600℃、最佳投加量为20 mg。另外,FeSO_4改性麦秸秆生物炭吸附去除对苯醌的效果比Na_2SO_3改性麦秸秆生物炭好。  相似文献   

14.
制备了KOH改性低温生物质炭(low temperature biochar modified by potassium hydroxide,BC-P)、KOH改性高温生物质炭(high temperature biochar modified by potassium hydroxide,HC-P)、NaHS改性低温生物质炭(low temperature biochar modified by sodium hydrosulfide,BC-S)、NaHS改性高温生物质炭(high temperature biochar modified by sodium hydrosulfide,HC-S),并研究了溶液pH、吸附剂投加量、吸附温度和Hg~(2+)浓度等因素对上述4种改性生物质炭吸附水溶液中Hg~(2+)的影响.结果表明,BC-S对Hg~(2+)吸附效果最好,在pH为4、温度为298 K、投加量为1.2 g/L时,对10.0 mg/L的Hg~(2+)溶液中Hg~(2+)吸附量为8.48 mg/g,去除率达到97.89%.准二级动力学能很好地描述BC-S对Hg~(2+)的吸附动力学过程,其等温吸附过程符合Langmuir吸附等温线,吸附热力学表明298 K最有利于BC-S吸附Hg~(2+).  相似文献   

15.
以常见柳条为生物炭原料,通过十六烷基三甲基氯化铵(CTMAC)进行阳离子表面活化,与零价铁、海藻酸钠混合制备了零价铁/阳离子表面活性剂/生物炭(Fe0?MBC)凝胶微球,探讨了其对水体Cr(VI)的吸附能力。借助XRF、FTIR、XRD以及Zeta电位等分析手段,对Fe0?MBC凝胶微球的结构与性能进行研究。通过分析反应时间、环境温度及pH对吸附的影响,在吸附动力学、等温线模型的基础上,初步探讨了吸附机制。通过吸附?解析循环实验,研究了Fe0?MBC凝胶微球的再生性能。结果表明,Fe0?MBC凝胶微球对Cr(VI)的吸附与准一级动力学和Langmuir等温吸附模型拟合度较高;Cr初始质量浓度100 mg/L、负载质量分数分别为5%和10%的零价铁的CTMAC活化生物炭对Cr(VI)的去除率在2 h时分别为89%、97%,最大饱和吸附量分别为33.777 9、42.562 0 mg/g;Fe0?MBC凝胶微球作为一种成本低、效率高的环境功能材料,对去除废水中的Cr(VI)具有良好的应用前景。  相似文献   

16.
花生壳活性炭对溶液中Cu2+和Ni2+的吸附性能   总被引:2,自引:0,他引:2  
以花生壳为原料制备花生壳活性炭,进行了吸附去除水溶液中Cu2+和Ni2+的试验.研究了活性炭投加量、吸附时间、溶液pH、初始Cu2+和Ni2+质量浓度等因素对花生壳活性炭去除Cu2+、Ni2+作用的影响.结果表明,花生壳活性炭对重金属的吸附是一个快速反应过程,可在60min内达到平衡.花生壳活性炭的投加量和溶液的pH对吸附效果有很大的影响,去除率随pH上升而增加,铜离子适宜的pH范围宽于镍离子.花生壳活性炭是一种廉价、有效的吸附剂,对溶液中铜离子的去除效果好于镍离子.  相似文献   

17.
采用菌体/粉煤灰复合吸附剂吸附活性红,通过单因素实验探究其吸附条件和吸附机理.结果表明:处理模拟活性红最佳条件为:pH=4.0~10.0,吸附剂投加量3 g/L,搅拌时间15min,静置时间1 h,此时脱色率均在89%以上.热力学的研究结果表明:Langmuir模型和Freundlich模型均不能用来描述吸附剂对活性红的吸附,吸附不属于单分子层吸附,吸附机理有待进一步研究.用颗粒内扩散方程、准二级吸附动力学方程和准一级吸附动力学方程对吸附进行分析,准二级吸附动力学方程能更好地描述活性红在复合吸附剂上的吸附,化学吸附过程由吸附剂对染料的吸附速率控制,饱和吸附量为49.15 mg/g.  相似文献   

18.
花生壳活性炭对溶液中Cu~(2+)和Ni~(2+)的吸附性能   总被引:2,自引:0,他引:2  
以花生壳为原料制备花生壳活性炭,进行了吸附去除水溶液中Cu2+和Ni2+的试验。研究了活性炭投加量、吸附时间、溶液pH、初始Cu2+和Ni2+质量浓度等因素对花生壳活性炭去除Cu2+、Ni2+作用的影响。结果表明,花生壳活性炭对重金属的吸附是一个快速反应过程,可在60 min内达到平衡。花生壳活性炭的投加量和溶液的pH对吸附效果有很大的影响,去除率随pH上升而增加,铜离子适宜的pH范围宽于镍离子。花生壳活性炭是一种廉价、有效的吸附剂,对溶液中铜离子的去除效果好于镍离子。  相似文献   

19.
以城市生活污水处理厂污泥为原料、碳酸氢钠为绿色活化剂、磷酸铵为氮磷源,采用真空热解法制备改性污泥生物炭,并采用SEM、FT?IR对材料进行了表征分析。结果表明,污泥生物炭改性后,可显著提高生物炭比表面积和孔隙度,以及N—H和C—O数量。研究了改性污泥生物炭投加量、污染物质量浓度、反应温度和pH等条件对苯酚吸附效果的影响,以及吸附的过程与机理。结果表明,改性污泥生物炭对苯酚有更好的吸附效果,吸附率随改性污泥生物炭投加量的增大而增大;当污染物质量浓度增大时,吸附率降低;反应温度越高,吸附效果越好;酸性条件有利于反应的进行。改性污泥生物炭对苯酚的吸附过程符合准二级动力学,吸附机理为单分子层吸附和不均匀的表面吸附。改性污泥生物炭具有良好的再生利用性能,可为污泥资源化利用及废水中苯酚的处理提供有效途径。  相似文献   

20.
选取花生壳、甘蔗渣和蛋壳膜等废弃物为原料,改性后制得生物质吸附剂,以直接蓝染料废水为处理对象,考察改性前后的吸附效果以及pH、吸附时间、吸附剂投加量等因素对吸附效果的影响,探讨了3种吸附剂的等温吸附和吸附动力学过程.研究表明,改性能够不同程度地提高3种吸附剂的吸附效果,pH和温度对吸附的影响较大,改性花生壳、甘蔗渣以及蛋壳膜在各自投加量条件下对染料废水的脱色率分别达到93.6%、97.4%和99.2%,平衡吸附量可达39,4mg/g、45.5mg/g及113mg/g,等温吸附过程遵从Langmuir方程,吸附动力学符合二级动力学模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号