共查询到20条相似文献,搜索用时 10 毫秒
1.
对于目标检测任务,深度神经网络模型中的一阶段网络结构存在两个问题.首先,网络结构中的锚框超参数设计的合适与否将影响整个网络的训练结果;其次,较大的降采样因子会影响目标的定位能力.针对这两个问题,提出了多尺度定位提升网络模型.重新设计了一阶段网络模型结构,并且提出了更好的锚框超参数选择方案,它在保证一阶段网络效率的同时,... 相似文献
2.
显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域.目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递.而且,现有的检测方法通常采用单一的特征检测,导致显著性目标区域与背景的边界不连续、易模糊.因此,本文提出一种多尺度特征提取和多级别特征融合的... 相似文献
3.
吴春光 《长春理工大学学报(自然科学版)》2011,34(3)
为提高海面目标检测性能,提出了基于多尺度分形特征的检测方法。该方法采用了模糊C均值聚类确定潜在目标点数,根据多尺度分形特征,利用支持向量机方法对像素点进行分类,实现目标检测。实验结果表明,该方法能更好地消除海空背景对目标检测的干扰,准确有效的检测出目标。 相似文献
4.
对双阶段目标检测模型Faster R-CNN进行火灾检测应用的改进.采用Resnet101模型作为特征提取网络,使用特征金字塔结构FPN提取了Resnet101的浅层特征和高层特征,将Resnet101的浅层特征图输入Inception Module结构提取多种尺寸的卷积特征,使用像素注意力机制和信道注意力机制对目标位... 相似文献
5.
RGB-D显著性目标检测是计算机视觉领域的研究任务之一,很多模型在简单场景下取得了较好的检测效果,却无法有效地处理多目标、深度图质量低下以及显著性目标色彩与背景相似等复杂场景。因此,本文提出一种三分支多层次Transformer特征交互的RGB-D显著性目标检测模型。首先,本文采用坐标注意力模块抑制RGB和深度图的噪声信息,提取出更为显著的特征用于后续解码。其次,通过特征融合模块将高层的三层特征图调整到相同的分辨率送入Transformer层,有效获取远距离显著性目标之间的关联关系和整幅图像的全局信息。然后,本文提出一个多层次特征交互模块,该模块通过有效地利用高层特征和低层特征对显著性目标的位置和边界进行细化。最后,本文设计一个密集扩张特征细化模块,利用密集扩张卷积获取丰富的多尺度特征,有效地应对显著性目标数量和尺寸变化。通过在5个公开的基准数据集与19种主流模型相比,实验结果表明:本文方法在多个测评指标上有较好的提升效果,提高了在特定复杂场景下的检测精度,从P-R曲线、F-measure曲线和显著图也可以直观看出本文方法实现了较好的检测结果,生成的显著图更完整、更清晰,相比其他模型更加接近真值图。 相似文献
6.
基于区域建议网络构建一种特征金字塔多尺度网络结构,并结合全卷积操作完成微小目标与类别无关目标的检测. 为了提升图像中微小目标的检测精度,构建基于侧链接融合的3层金字塔结构网络,充分利用语义级别比较低的图像卷积特征. 为了提高类别无关的图像目标检测鲁棒性,提出特定的非极大值抑制算法,在重叠目标过滤时消除冗余目标窗口,并对目标窗口进行位置精修. 在PASCAL VOC 2007、PASCAL VOC 2012以及古代绘画数据集上的实验结果表明:所提算法对于微小目标、多尺度目标检测及种类无关的目标检测的检测精度高于已有算法. 相似文献
7.
《西安邮电学院学报》2016,(6):44-50
给出一种基于多特征融合的核相关滤波器变尺度估计方法,以求解决视觉跟踪目标尺度变化问题。先提取目标所在区域的方向梯度直方图、颜色名和均匀局部二值模式,将此三种特征进行融合,构造训练样本,对目标外观建模;再求解线性岭回归函数,获得位置和尺度核相关滤波模板,对待检测帧的候选区域进行相似性度量,确定跟踪目标位置及尺度;实时更新位置模型和尺度模型的学习因子。实验结果表明,所给方法在不同挑战因素下,满足精确跟踪的要求,且在目标尺度变化、遮挡等复杂场景下,有较强鲁棒性。 相似文献
8.
针对目标检测中多类别、多尺度和背景复杂而导致的SSD (Single Shot Multibox Detector)算法检测精度不高的问题,提出了一种多尺度特征增强的改进SSD目标检测算法。首先将SSD网络模型的高层特征依次向下与浅层特征融合,构造一种多尺度目标检测结构。然后利用注意力机制对特征进行进一步的优化,从而达到增强网络模型特征提取的目的。最后用DIoU-NMS来处理图像目标中冗余框的问题,减少目标的漏检。在公开的NWPU VHR-10遥感数据集上将该方法与其他算法进行对比实验,其m AP较传统的SSD算法提高了6.7%。最后将改进后的算法应用于地铁安检图片检测,并在此数据集上进行消融实验来验证此算法每一阶段的有效性。 相似文献
9.
针对现有皮肤病变图像分割时缺乏多尺度特征提取,从而导致细节信息缺失和病变区域误分割的问题,本文提出一种融合多尺度Transformer的编解码网络皮肤病变分割算法。首先运用Transformer模块构建分层编码器,分层编码器从全局特征变化角度出发,多尺度分析皮肤病变区域;然后利用多尺度融合模块、通道注意力模块和联合层构建融合解码器,多尺度融合模块互补分层编码器中浅层网络信息与深层网络信息,增强空间信息和语义信息间的依赖关系,通道注意力模块能够有效识别特征丰富的通道,提高算法分割精度;最后引入扩展模块恢复图像大小以匹配实际需求。将该算法在ISBI2016、ISBI2017和ISIC2018三个公共数据集上进行实验测试,其像素精度分别为96.70%、94.50%和95.39%,平均交并比分别为91.69%、85.74%和89.29%,算法测试整体性能优于现有算法。仿真实验证明,多尺度Transformer编解码网络能够有效地分割皮肤病变图像。 相似文献
10.
RGB深度图像(RGB–D)显著性目标检测是计算机视觉领域的研究任务之一,很多模型在简单场景下取得了较好的检测效果,却无法有效地处理多目标、深度图质量低下及显著性目标色彩与背景相似等复杂场景。因此,本文提出一种3分支多层次Transformer特征交互的RGB–D显著性目标检测模型。首先,提出一个跨模态坐标注意力模块,该模块通过采用坐标注意力抑制RGB图像和深度图的噪声信息,从而提取出更为显著的特征信息用于后续解码。其次,通过特征融合模块将高层的3层特征图调整到相同的分辨率送入Transformer层,有效地获取远距离显著性目标之间的关联关系和整幅图像的全局信息。然后,提出一个多层次特征交互模块,该模块有效地聚合多层次信息进行特征交互,从而能够更精准地定位显著性目标的位置,同时对显著性目标的边界进行细化。最后,设计一个密集扩张特征细化模块,利用密集扩张卷积获取丰富的多尺度特征,有效地应对显著性目标数量和尺寸变化。将模型在5个公开的基准数据集上与19种主流模型相比,实验结果表明:本文方法在多个测评指标上有较好的提升效果,提高了在特定复杂场景下的检测精度;从P–R(precision–re... 相似文献
11.
目前大多数目标检测算法,由于尺度跨度较大而导致模型整体精确率和召回率不高,容易出现错检、漏检等现象。针对上述问题,提出一种融合超分辨率重建技术的多尺度目标检测算法。首先,算法以单阶段目标检测算法YOLO框架为基础,在颈部网络实现多尺度特征融合时加入超分辨率重建模块,避免进一步丢失较深层特征图中的细节特征。其次,使用通道注意力模块将较浅层特征图中的无关特征进行抑制,重点关注含有目标轮廓特征的通道信息,进一步增强浅层特征的表达能力。最后,在PASCAL VOC 2007和MS COCO 2017公开数据集上进行了消融实验和对比实验。实验结果表明,所提模块对检测性能有不同程度的提升,相比当前其他多尺度目标检测算法,所提算法在大、中、小三种尺度下目标平均精确率分别提升约1.20%、1.20%和1.30%,平均召回率分别提升约4.20%、3.50%和4.20%,算法整体检测性能得到进一步改善。 相似文献
12.
水上交通场景环境复杂,通过普通光学摄像设备获取的水面图像,面临着视觉目标清晰度低、尺度多样化等问题,使得可见光视觉信号里中、小尺度目标检测相对困难。为服务于各类智慧海事应用,提出了一个旨在提高复杂水域背景下多尺度水上船舶目标检测性能的算法(multi-scale ship object detection,MS-SOD)。该算法基于当前计算机视觉技术中主流的单阶段目标检测模型框架,在其主干网络中嵌入卷积注意力模块,来优化船舶特征提取能力;在多尺度特征融合网络中引入富含细节信息的浅层特征,并使用跨阶段局部残差结构,来优化多尺度船舶特征的融合机制;同时,使用焦点损失函数,来优化模型的学习过程;并设计自适应锚框聚类算法优化先验锚框,以提高多尺度船舶目标检测能力。为验证提出算法的有效性和实效性,在构建较大规模水上船舶目标数据集的基础上,开展了广泛实验验证。结果表明:提出的算法在测试数据集上的检测准确度超过了各主流的对比方法;特别是对于大、中、小各尺度船舶目标的检测精度,相对于主流的YOLOv4算法,提出的算法分别提升了11.3%、6.0%和10.5%。 相似文献
13.
针对传统目标检测算法(SSD)检测小目标精度低的问题,提出基于注意力机制与多尺度信息融合方法并将其运用于车辆检测任务.结合浅层特征图与深层特征图的优势,小目标检测分支和大中型目标检测分支的特征图采用5支路和2支路融合.在基础网络层之间加入注意力机制模块,模型会关注包含更多信息量的通道.实验结果表明,在自建车辆数据集上的均值平均精度(m AP)达到90.2%,比传统SSD算法提高了10.0%,其中小目标检测精度提高了17.9%;在PASCAL VOC 2012数据集上的类别平均精度mAP为83.1%,比主流的YOLOv5算法提高了6.4%.此外,提出算法在GTX1 660 Ti PC端的检测速度可以达到25帧/s,能够满足实时性的需求. 相似文献
14.
15.
水果图像识别是智能采摘系统中最重要的组成部分.针对现阶段水果图像识别过程中存在的漏检和误检现象,为进一步提高识别准确率,研究了基于多尺度特征融合的水果图像识别算法.首先,为避免训练过程中出现欠拟合现象,对Fruits-360中的水果图像进行数据扩充,并进一步灰度归一化处理以减少计算量.随后采用ResNet-50作为骨干网络,并在骨干网络的基础上建立多尺度采样层,使用1×1、3×3和5×5的卷积核在拓宽网络宽度的同时进行特征提取,多尺度网络层整体增加BN层,即在每个卷积层之后都增加BN层.使在ResNet-50提取的原始特征基础上获取语义信息更加丰富的特征图.最后采用梯度下降法优化网络,得到最终的识别模型.实验结果表明,所提算法识别精度高,可准确的对水果图像经识别,识别精度高达99.4%,在相同数据集的情况下,优于目前主流算法,可为水果自动采摘技术提供帮助. 相似文献
16.
针对在三维目标检测中由于空间维度的增加基于锚框的方法难以部署的问题,研究了基于集合预测的点云目标检测算法。提出一种基于Transformer的3D点云目标检测算法,并结合自动驾驶场景下的点云特点,提出了改进空间调制注意力和热图初始化策略进行训练加速和查询初始化,在浅层网络下取得了良好的检测性能。在KITTI数据集上与其他算法进行比较,结果表明所提算法在性能上已经达到先进水平,进一步对算法中的主要组成部分进行了消融实验,验证了各个模块对检测效果的贡献。 相似文献
17.
复杂条件下特殊目标的精确检测是增强特定场景态势生成和预测能力的关键因素。目前的技术不能克服航拍视频中出现的烟雾和遮挡干扰、目标高度变化、尺度不一等问题。因此,提出一个多特征交叉融合及跨层级联的航拍特殊目标检测算法(YOLOv5-MFLC)。针对实际特殊目标保密性高、航拍图像资源匮乏的问题,构建了一个基于真实场景的航拍特殊目标数据集,并采用随机拼接和随机提取嵌入的方法进行数据增强以提高目标多样性和泛化性;针对复杂背景干扰问题,构建了多特征交叉融合注意力机制,增强了目标特征的可用信息;针对航拍图像中目标多尺度问题,设计了跨层级联多尺度特征融合金字塔,提高了跨尺度目标的检测准确率。实验结果表明,与现有的先进检测模型相比,所提算法的检测准确率有较大提升,算法平均准确率可达到81.0%,相比于原始网络提升了5.2%,特别是,在更小的目标类别“person”中达到了55.9%,提升了9.4%,进一步表明了所提改进算法对小目标检测的有用性。同时,所提算法的检测速率可以达56 frame/s,能够有效地实现实际复杂场景特殊目标的准确、快速检测,对特殊目标的识别具有一定的指导意义。 相似文献
18.
针对现有的协同显著性检测算法在多显著目标复杂场景下表现不佳的问题,提出了一种基于高效通道注意力和特征融合的协同显著性检测算法。首先,检测算法利用预训练的深度卷积神经网络对场景进行多尺度特征的提取,结合边缘显著信息设计了显著性语义特征提取模块,以避免全卷积神经网络导致边缘信息的缺失;其次,通过内积基本原理得到组内图片间的关联性信息并根据其关联程度进行自适应加权,结合高效通道注意力层设计了协同特征提取算法;最后,为了将各级高层语义特征经过协同显著性特征提取之后的结果与浅层次的特征进行融合,并实现对预测结果进行多分支同步监督,设计了基于高效通道注意力的特征融合模块。通过对3个经典的数据集进行测试,并与6种现有的协同显著检测算法进行对比,结果表明本文所提算法提高了复杂场景中图像的协同显著性检测的精度以及边缘信息的丰富程度,并具有更优的协同显著性信息检测性能;通过消融实验进一步验证了所提设计算法各个模块的有效性和必要性。 相似文献
19.
水下光学图像存在色偏、低对比度、目标模糊的现象,导致水下目标检测时存在漏检、误检等问题。针对上述问题,提出了一种基于通道注意力与特征融合的水下目标检测算法。基于通道注意力设计了激励残差模块,将前向传播的特征信息进行自适应分配权重,以突出不同通道特征图的显著性,提高了网络对水下图像高频信息的提取能力;设计了多尺度特征融合模块,增加了大尺度特征图用于目标检测,利用其对应的小尺度感受野提高了网络对小尺寸目标的检测性能,进一步提高了网络对水下不同尺寸目标的检测精度;为提高网络对水下环境的泛化性能,设计了基于拼接和融合的数据增强方法,模拟水下目标的重叠、遮挡和模糊情况,增强了网络对水下环境的适应性。通过在公共数据集URPC上的实验,与YOLOv3、YOLOv4和YOLOv5相比,所提算法的平均精度均值分别提升5.42%,3.20%和0.9%,有效改善了水下复杂环境中不同尺寸目标漏检、误检的问题。 相似文献
20.
王军 《电子科技大学学报(自然科学版)》2022,51(4):586-591
传统异常事件检测方法面临着视频中物体大小变化、背景等问题的影响。为了解决该问题,提出了一种基于多尺度特征预测的异常事件检测方法。首先,利用空洞卷积提取不同大小感受野的特征并进行融合以解决物体大小变化的问题。然后,使用一种轻量化的通道注意力方法来减少无效背景信息的影响。最后,为了充分利用视频帧之间的上下文信息,采用深度特征预测模块根据历史时刻的特征预测当前时刻的特征,并根据预测特征与真实特征之间的差异进行异常判断。在USCD Ped2,UMN两个基准数据集上进行了实验,实验结果表明了该文方法的有效性。 相似文献