首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于0.13μm工艺设计的低功耗无片外电容LDO,文中采用动态自偏置技术使电路根据负载变化,提供不同的偏置电流,实现两级和三级结构下相互转化。电路采用Cascode Miller补偿,实现高稳定性。输出端加入过冲抑制电路,优化瞬态响应。仿真得到压差电压为57 mV;在-55~125℃范围内,温漂系数为27 ppm/℃;在电源电压1.2~3.3 V和负载100 nA~50 mA的变化范围内,线性调整率为0.452 mV/V,负载调整率为0.074 mV/mA。满载50 mA和电源电压1.2 V时,电源抑制比-53 dB@100 kHz,环路相位裕度大于60°。负载100 nA时静态电流2.5μA。负载瞬态响应结果展示过冲电压小于50 mV,建立时间约420 ns。此电路可调节性强,作为低功耗芯片,有着优秀的稳定性,适用于便携式产品。  相似文献   

2.
一种低功耗、高稳定性的无片外电容线性稳压器   总被引:2,自引:0,他引:2  
本文研究并设计了输出电压3.3V,最大输出电流为150mA的CMOS无片外电容的低压差线性稳压器(Off-chipcapacitor-free Low-dropout Voltage Regulator,LDO).该LDO采用了NMC(Nested Miller Compensation)频率补偿技术保证了系统的稳定性.另外,采用大电容环路和SRE(Slew Rate Enhancement)电路抑制输出电压的跳变,改善了瞬态响应.电路采用了低功耗设计技术.采用CSMC 0.5μm CMOS混合信号工艺模型仿真表明:整个LDO的静态电流仅为3.8μA;最差情况下的相位裕度约为88.50;在5V工作电压下,当负载电流在1μs内从150mA下降到1mA时,输出电压变化仅为140mV;在负载电流150mA的情况下,当电源电压在5μs内从3.5V跳变至5V时,输出电压变化也仅为140mV.  相似文献   

3.
设计了一种高性能无片外电容型LDO线性稳压器.其中,EA采用推挽输出放大器设计,在静态时保持低功耗,瞬态响应时提供大的输出电流,提高LDO的响应速率.高环路增益使LDO电路具有很高的稳压精度;采用零点补偿技术,保证了LDO环路稳定性.LDO采用0.13μm CMOS工艺设计,仿真结果表明,在1.2V^2.0V输入电压下,LDO输出稳定的1.0V电压,输出负载电流为50μA^100mA,最大负载电容可达到100pF,低频PSR为-67.5dB@100mA^-85.5dB@50μA,负载调整率0.8μV/mA,LDO的静态电流为50μA,整体版图面积为0.016 3mm2.  相似文献   

4.
基于SMIC 0.18 μm CMOS工艺,设计了一款输入电压为1.8 V、输出电压为1.6 V的低功耗无片外电容低压差线性稳压器(LDO),其静态电流仅为5 μA。该电路采用一种新型摆率增强电路,通过检测输出电压的变化实现对功率管的瞬态调节。片内采用密勒补偿使主次极点分离,整个系统在负载范围内具有良好的稳定性。仿真结果显示,该LDO在负载电流以99 mA/1 μs跳变时,输出电压下冲为59 mV,上冲为60 mV,响应时间约为1.7 μs。  相似文献   

5.
针对便携式设备快速瞬态响应、低噪声、高电源抑制比等应用需求,提出了一种无片外电容NMOS型低压差线性稳压器(LDO)。该LDO基于浮栅结构,通过具有推挽输出级的放大器辅助控制,减小了电荷泵的噪声耦合;另外,通过取样输出电流控制误差放大器的输出动态范围,极大地提高了电路的瞬态响应能力。电路基于HHGrace 0.35μm BCD工艺设计,仿真结果表明,无外接电容时,负载电流在1μA~400 mA之间跳变,电路的下冲电压为203 mV,过冲电压为101 mV,响应时间小于1.5μs;在10 Hz~100 kHz的频段内,系统输出积分噪声电压为14μV·Hz-1/2。LDO达到了快速瞬态响应和低噪声的需求。  相似文献   

6.
提出了一种无片外电容、快速瞬态响应、宽输入电压范围的低压差线性稳压器(LDO)。该电路基于翻转电压跟随器(FVF)结构,不需额外增加辅助电路,仅使用两个电容作为检测模块,以动态调整瞬态响应,能够弥补传统LDO集成度低、面积大、功耗高、瞬态响应差的不足。电路基于TSMC 180 nm CMOS工艺。仿真结果表明,该LDO的压差为200 mV,静态电流为36μA,输入电压范围为2~4 V,低频时PSRR为-59 dB。在30 pF负载电容、0~10 mA负载电流、150 ns阶跃时间条件下,产生的上冲电压为50 mV,下冲电压为66 mV,瞬态电压恢复时间为300 ns。  相似文献   

7.
基于0.35μm CMOS工艺设计了一款无片外电容低压差线性稳压器(cap-free LDO),通过误差放大器组成的环路控制稳态误差,通过摆率增强电路构成的环路改善瞬态响应。该LDO输出电压为1.72V,压差80mV,最大输出电流50mA。测试结果显示:负载电流(IL)在0.5μs内瞬变50mA时,俯冲电压和过冲电压均为80mV左右,重回稳态的时间均小于1.5μs。  相似文献   

8.
王瑄  王卫东 《微电子学》2019,49(5):674-679
提出了一种基于翻转电压跟随器(FVF)的无片外电容低压差线性稳压器(LDO)。采用电压检测器来检测输出电压,大幅改善了瞬态响应,克服了常规LDO面积大、需要使用片内大电容的缺点,仅消耗了额外的静态电流。该LDO采用90 nm CMOS工艺进行设计与仿真,面积为0.009 6 mm2,输入电压为1.2 V,压差为200 mV。结果表明,在50 pF负载电容、3~100 mA负载电流、300 ns跃迁时间的条件下,产生的上冲电压为65 mV,瞬态恢复时间为1 μs,产生下冲电压为89 mV,瞬态恢复时间为1.4 μs,且将负载调整率性能改善到0.02 mV/mA。  相似文献   

9.
毛帅  张杰  明鑫  张波 《微电子学》2022,52(6):974-980
设计了一种片外大电容快速瞬态响应低压差线性稳压器。该LDO电路基于跨导线性结构设计,在输出级引入推挽结构,有效地减小过冲的幅值和恢复时间,提高了LDO的瞬态响应速度;利用浮动缓冲器驱动功率管,有效地提高了LDO的电流效率;采用动态零点补偿技术,保证了LDO在全负载范围内的环路稳定性。该LDO电路基于0.35μm BCD工艺设计与仿真验证。结果表明,在1.2 V~3 V输入电压范围,LDO的输出电压为1 V,静态电流约为50μA,可提供0~300 mA的负载。在上升下降沿为500 ns、幅度为300 mA、轻载持续时间为50μs的负载瞬态跳变下,过冲和下冲均小于20 mV。电路满足高频负载跳变的应用需求。  相似文献   

10.
设计了一种基于自适应偏置放大器的具有快速瞬态响应的无输出电容LDO.自适应偏置放大器在发生负载瞬态响应时能够调节自身偏置电流以提供较大的输出电流来增加摆率;瞬态响应提升电路通过减小负载电容充放电电流而减小了输出电压的建立时间;通过并联反馈补偿来提高环路的稳定性.仿真结果表明,所设计的无输出电容LDO最大输出电流200mA,最小跌落电压200mV,静态电流仅16μA,全负载正负阶跃变化响应时间分别为2.5μs和3.5μs.  相似文献   

11.
提出了一种新颖的有源零点补偿LDO结构,实现了LDO在全负载范围内的稳定,1~10 MHz范围内的电源抑制比提高了10 dB。采用欠冲电压减小技术,显著减小了输出欠冲电压,提高了瞬态响应性能。基于SMIC 65 nm CMOS工艺,设计了输出电压为1 V、压差电压为200 mV、最大输出电流为100mA的无片外电容LDO。仿真结果显示,空载时LDO的相位裕度为64.3°,最大过冲和欠冲电压分别为52 mV和47 mV,满载时LDO的电源抑制比为-66 dB@10 kHz。  相似文献   

12.
针对无片外电容型低压差线性稳压器(LDO)瞬态响应差的问题,基于40 nm CMOS工艺设计了一种带瞬态负载变化感知的无片外电容型LDO电路。采用有源前馈频率补偿,实现了电路稳定;瞬变检测电路感应负载的变化,为功率管栅极提供充、放电通路,减弱了输出电压波动。仿真结果表明,负载电流在0~100 mA范围内,该LDO的输出过冲电压和下冲电压分别为100 mV和140 mV,稳定时间在1 μs以内。全负载电流范围内,瞬态性能大幅提升。  相似文献   

13.
本文基于自适应偏置电流电路,设计了一款超低功耗的低压差线性稳压器(LDO),使用动态零点补偿技术使电路稳定,提出了以比较器为核心的基于电容耦合电压峰值检测的过冲电压削减电路,以减小LDO在负载电流向下突变时产生的过冲电压。在使用自适应电流偏置电路以及过冲电压削减电路的情况下,空载状态的LDO静态电流小于590nA。本设计在两级误差放大器的输出端添加二极管连接形式的PMOS作为缓冲级,一方面有利于LDO的稳定,另一方面增强了LDO的瞬态响应特性。另外,本设计采用了0.18μm CMOS工艺,利用Cadence设计平台进行仿真验证,得到了一款输出电压为3.3V、最大负载电流为200mA、负载电流范围内相位裕度均在50°以上、负载电流在1mA与200mA之间以10ns跳变时得到的欠冲电压为160mV、过冲电压136mV的超低功耗LDO。  相似文献   

14.
设计了一种快速瞬态响应的无片外电容型LDO。采用高增益高带宽的超级跨导结构(STC)的误差放大器,利用动态偏置技术与电容耦合技术,极大地增强了摆率。引入额外的快速响应环路,进一步提升了瞬态响应速度。基于0.18 μm CMOS工艺进行设计。结果表明,该LDO的最低供电电压为1 V,漏失电压仅为200 mV,可提供最大100 mA的负载电流,能在最大输出电容为100 pF、最低负载为50 μA的条件下保证电路稳定。负载电流在0.5 μs内由50 μA跳变至100 mA时,LDO输出导致的过冲电压和下冲电压分别为200 mV和306 mV。  相似文献   

15.
设计了一款无片外电容低压差线性稳压器(LDO),与传统的LDO相比,此LDO消除了传统结构中所需的片外电容,可更好地应用于全集成低功耗的片上系统(SoC)中。针对无片外电容LDO没有外部等效零点补偿这一特点,采用一种折叠输入推挽输出误差放大器结构,结合密勒补偿以及一阶RC串联零点补偿两种方案,有效地改善了无片外电容LDO的稳定性。电路采用SMIC0.18μm CMOS工艺实现,面积为0.11 mm2,最大负载电容100 pF,输入电压为1.8 V时,输出电压为1.5 V,静态电流31.8μA,压差为160 mV。  相似文献   

16.
分析了传统LDO提高系统稳定性及瞬态响应的局限性,提出了一种片内集成补偿技术。该技术无需外挂电容和等效串联电阻(ESR),即可使系统在全负载范围内保持稳定,并具有良好的纹波抑制能力。仿真结果表明,系统空载时静态电流为46μA,且能提供200mA的最大负载电流,低频电源抑制比达到-65.6dB,启动时间只有16μs,在输出电容为10pF、负载电流以200mA/2μs突变时,最大下冲电压为120mV,上冲电压为160mV。  相似文献   

17.
本文基于SMIC65 nm工艺,设计了一款快速瞬态响应的无片外电容型低压差线性稳压器(low dropout regulator,LDO).采用高增益跨导结构(OTA)的误差放大器,利用局部共模反馈结构(CFRFC),增加了放大器跨导率,提高了放大器的直流增益.同时,引入一个由电容耦合电流镜构成的瞬态检测电路,取代了传统LDO电路中的大电容,便于检测输出的跳变,增大对功率管的充放电能力,提高了环路瞬态响应速度,降低LDO环路的上/下冲电压.缓冲级采用了带电压负反馈的源级跟随器,在一定的静态功耗下,提高了动态电流,将次级点推到更高的频率,提高了电路相位裕度.仿真结果表明,输入电压为2~3 V时,该电路输出为1.2 V,最大负载电流为100 mA;当负载电流在0~100 mA时,LDO输出的最大过冲电压和欠冲电压为23 mV和27 mV,并且在低频时有较高的电源抑制比.  相似文献   

18.
基于推挽式结构能提高运算放大器压摆率的特性,设计了一款静态电流低、内含推挽式AB类放大器的无电容型低压差线性稳压器(LDO)。通过优化,改善了LDO的瞬态响应性能,与传统的LDO相比,所提出的无电容型LDO的静态电流明显减小。采用SMIC 0.18 μm CMOS工艺模型,利用Cadence工具对电路进行仿真验证。仿真结果表明,当输入电压为1.4~4 V时,优化后LDO的输出电压为1.2 V,静态电流为5.2 μA,最大负载电流达到100 mA,线性调整率为0.016%,负载调整率为0.67%,下过冲为157 mV,上过冲为121 mV,建立时间为1.5 μs。优化后电路瞬态响应性能改善了约50%,版图面积约为0.017 mm2。  相似文献   

19.
在传统无电容型LDO的基础上,设计了一种带瞬态增强的无电容型LDO。采用频率补偿方案,有效减小所需的片上补偿电容,节约了芯片面积。采用了过冲/下冲检测电路,用于检测负载瞬间变化时输出电压的变化,通过调节功率管栅极电压,提升了LDO的瞬态响应速度。采用0.13 μm标准CMOS工艺,对设计的瞬态增强无电容型LDO进行仿真验证。结果表明,片上补偿电容为2 pF时,系统静态电流为30 μA,当负载在1 μs内从1 mA变化到50 mA时,输出电压过冲为88 mV,下冲为50 mV,与不带过冲/下冲检测电路的LDO相比,分别提高了56%和54%。  相似文献   

20.
田霖  尹勇生  邓红辉 《微电子学》2024,54(2):214-220
基于SMIC 0.18 μm BCD工艺设计了一种低静态电流、高瞬态响应的无片外电容 低压差线性稳压器(Low Dropout Regulator, LDO)。误差放大器采用一种跨导提升技术,在低静态电流的情况下,实现更高的环路增益及单位增益带宽。由于采用高增益误差放大器,可以通过适当减少功率管尺寸来增强瞬态响应。采用有源反馈,在不引入额外静态电流情况下,增大环路的次极点。同时当LDO输出电压变化时,能够增大功率管栅极的动态电流,实现高瞬态响应。此外在有源反馈的基础上,采用反馈电阻并联小电容的方式,以提高环路稳定性。利用Cadence Spectre软件对LDO进行仿真验证。结果显示,LDO的静态电流仅为10 μA;在负载电流为1 mA的情况下,相位裕度最高可达70.9°;LDO负载电流在500 ns内从1 mA切换到100 mA时,下冲电压为134.7 mV,下冲电压恢复时间为1 μs;负载电流在500 ns内从100 mA切换到1 mA时,过冲电压为155.5 mV,过冲电压恢复时间为430 ns。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号