共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
基于动态元件匹配的CMOS集成温度传感器设计 总被引:1,自引:0,他引:1
利用CMOS工艺下衬底型双极晶体管的温度特性,设计了一种精度较高的温度传感器.动态元件匹配的应用很好地解决了由于集成电路工艺误差引起的不匹配对温度传感器性能的影响.采用CSMC 0.5μm混合信号工艺仿真,结果显示,该温度传感器精度是0.15℃,线性度是0.15%.多个芯片实测结果表明:温度传感器精度小于0.6℃,线性度小于0.68%,功耗为587μW,芯片面积为225μm×95μm,输出为模拟电压信号,便于采集,为后端处理和应用提供方便. 相似文献
4.
设计了一种适用于过高磁场抗扰度的电容式隔离型全差分Σ-Δ调制器。它采用单环2阶1位量化的前馈积分器结构,运用斩波技术降低低频噪声和直流失调。与传统的全差分结构相比,该调制器的每级积分器均采用4个采样电容,在一个时钟周期内能实现两次采样与积分,所需的外部时钟频率仅为传统积分器的一半,降低了运放的压摆率及单位增益带宽的设计要求,实现了低功耗。基于CSMC 0.35 μm CMOS工艺,在5 V电源电压、10 MHz采样频率和256过采样率的条件下进行电路仿真。后仿真结果表明,调制器的SNDR为100.7 dB,THD为-104.9 dB,ENOB可达16.78位,总功耗仅为0.4 mA。 相似文献
5.
6.
设计了一种适用于无线窄带射频接收系统的带通∑-△调制器,并将其成功集成于一个无线射频收发芯片之中。该调制器采用0.35μm CMOS工艺实现,采用斩波-稳零,动态元件匹配,以及正交采样等技术,提高系统的信噪比,并解决通道间失配的问题。模拟结果表明,该电路在30kHz带宽内,信噪比为83.4dB,而两个通道消耗的总电流仅为1mA。 相似文献
7.
基于脉冲宽度可调(PWM)信号调制技术,设计了一种温度传感器电路,并对电路整体性能进行了仿真。所设计的温度传感器电路利用带隙基准电路实现了温度采样功能,采用PWM信号调制技术,在一次测温周期中输出一定数量的脉冲信号。为了减小测温误差,电路中引入斩波技术,较低平均功耗(152μW)下将电路失调电压减小了两个数量级,提高了系统的测温精度;数据转换过程中,采用带有零极点优化技术的高阶多位量化sigma-delta信号处理技术,在低过采样率(16)条件下具有足够的信噪比(79.4 dB),功耗和精度取得了较好的折中。该电路功耗低、精度高,适于各类物联网(IoT)应用。 相似文献
8.
9.
设计了一种适用于无线窄带射频接收系统的带通Σ-Δ调制器,并将其成功集成于一个无线射频收发芯片之中.该调制器采用0.35 μm CMOS工艺实现,采用斩波-稳零,动态元件匹配,以及正交采样等技术,提高系统的信噪比,并解决通道间失配的问题.模拟结果表明,该电路在30 kHz带宽内,信噪比为83.4 dB,而两个通道消耗的总电流仅为1 mA. 相似文献
10.
设计了一款适用于集成热真空传感器的二阶1位Σ-Δ调制器.该调制器采用前馈通道抑制积分器的输出摆幅、降低谐波失真、提高动态范围.为了降低运算放大器的1/f噪声,积分器中引入相关双采样电路.利用Matlab/Simulink,分析运算放大器的非理想性对调制器性能的影响.调制器由全差分开关电容电路实现.仿真结果表明:在4 MHz采样频率和6.8 kHz信号输入频率、-3 dBFS幅值下,电路的最大信噪比为86.9 dB,分辨率可达14位.调制器的有效面积为0.67 mm2.3 V电源电压供电时,功耗为12 mW,各项性能指标均满足设计要求. 相似文献
11.
针对目前超低功耗温度传感器误差大的问题,运用由精确比例电流源偏置的寄生衬底PNP晶体管,采用0.18 μm混合信号工艺设计了一种可集成于无源RFID标签的新型高精度温度传感器。传感器核心电路产生与绝对温度成正比的电压信号,通过新型开关电容积分器进行放大,并由改进的12位超低功耗逐次逼近模数转换器完成数字量化。仿真结果表明,单次温度转换时间为4.25 ms;在1.8 V工作电压下,平均电流为17.5 μA;在-37 ℃~91 ℃范围内,温度误差为 -0.1 ℃~0.43 ℃。 相似文献
12.
设计了一款适用于集成热真空传感器的二阶1位Σ-Δ调制器。该调制器采用前馈通道抑制积分器的输出摆幅、降低谐波失真、提高动态范围。为了降低运算放大器的1/f噪声,积分器中引入相关双采样电路。利用Matlab/Simulink,分析运算放大器的非理想性对调制器性能的影响。调制器由全差分开关电容电路实现。仿真结果表明:在4 MHz采样频率和6.8 kHz信号输入频率-3、dBFS幅值下,电路的最大信噪比为86.9 dB,分辨率可达14位。调制器的有效面积为0.67 mm2。3 V电源电压供电时,功耗为12 mW,各项性能指标均满足设计要求。 相似文献
13.
介绍了一种基于0.18μm CMOS工艺的高精度数字式温度传感器电路。在感温前端模块,通过利用动态匹配技术与斩波技术,并采用混合型一阶sigma-delta/SAR型ADC,在降低功耗的同时实现更高的分辨率,提高温度传感器的采样精度。经过仿真及测试验证,提出的基于混合型ADC的高精度数字式温度传感器电路,提供16 bit温度结果,应用时无需校准即可在-25~55℃的温度范围内达到±0.1℃精度。通过使能控制,极大程度地减少自发热对测温精度的影响,在1.7~5.5 V的电压范围内,电流最大值仅为5μA。在达到高精度的同时,降低了成本与功耗。 相似文献
14.
针对高精度 Σ-Δ 调制器因采用高阶或者级联结构而存在满摆幅输入条件下积分器容易过载以及电路复杂度较高的问题,利用Matlab设计了一种满摆幅输入的高精度 Σ-Δ 调制器。采用描述调制器时域模型的方法,使用代码自动综合出满足要求的调制器系数。该调制器电路采用Tower Jazz 0.18 μm CMOS工艺进行设计与仿真,结果表明,带宽内的信噪失真比达到105.5 dB,有效位数为17.2位,版图面积为0.4 mm2,在5 V电源电压下功耗为1.2 mW。该调制器可用于对任意输入信号幅度的低频微弱信号进行精确检测的传感器信号采集电路中。 相似文献
15.
16.
17.
18.
针对Σ-Δ调制器输入失调电压的需求,设计了一种新型低输入失调电压的Σ-Δ调制器。利用斩波稳定运算放大器和新颖的开关电容积分器,动态消除了直流失调电压以及低频噪声(主要包含1/f噪声),使得调制器的输入失调电压微乎其微。基于0.15 μm CMOS工艺,利用Hspice软件对电路进行仿真,同时采用Matlab和TCL对仿真结果进行分析。仿真结果表明,在电源电压为4.5~5.5 V、温度为-40 ℃~85 ℃、各种工艺角下,低频噪声抑制能力增加了15 dB,且当运算跨导放大器的失调电压为10 mV时,Σ-Δ调制器的输入失调电压由9.7 mV下降为0.4 mV。 相似文献
19.
文章介绍了一种基于一阶Sigma-Delta(∑-△)过采样算法的红外焦平面片上模数转换电路的设计。片上模数转换电路是红外焦平面CMOS数字读出电路芯片的关键,需要综合考虑芯片的功耗、面积和速度要求来选择实现算法。文中首先回顾了红外焦平面片上模数转换电路的研究发展,然后阐述了一阶∑-△过采样ADC算法的原理,详细分析了实现算法的一种调制器电路结构和数字抽取滤波器结构,最后给出了一阶∑-△过采样ADC电路的仿真结果,显示精度10位,调制器模拟电路功耗约为15μw,并进行了误差分析。 相似文献