首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
针对微波通信等领域的整机系统对超宽带数控衰减器的需求,采用GaAs pHEMT 0.15μm工艺研制了一款DC~40 GHz带数字驱动的6位数控衰减器芯片。衰减器电路采用6个基本衰减单元级联结构,每个衰减单元采用合适的电路拓扑,通过合理优化后,实现了低插入损耗、高衰减精度、低衰减附加相移和小尺寸的目标。由芯片在片测试结果可知,插入损耗小于6.5 dB,输入输出电压驻波比小于1.8:1,均方根衰减精度(64态)小于0.8 dB,全态衰减附加相移小于±10°,静态功耗为3 mA@-5 V,芯片尺寸为2.08 mm×1.1 mm×0.1 mm。  相似文献   

2.
设计实现了一种晶圆级封装的三位MEMS数控衰减器,工作频段DC~15 GHz,衰减范围0~35 dB,步进5 dB。衰减器采用MEMS工艺实现,信号传输采用共面波导(CPW)结构,6个直接接触式悬臂梁MEMS开关对称放置实现不同衰减量的切换,每个开关带有三个触点,电阻网络采用T型结构,整个衰减器实现晶圆级封装。测试结果显示,DC~15 GHz频段内实现了8个衰减态,衰减器插入损耗小于1.7 dB,回波损耗小于-15 dB,衰减平坦度小于±5%,功耗几乎为零。芯片尺寸为2.7 mm×2.7 mm×0.8 mm。  相似文献   

3.
介绍了一款高精度大衰减量单片数控衰减器的主要技术指标和设计方法。电路设计基于Agilent ADS微波软件设计环境,采用GaAs HFET工艺技术实现。对开关器件建模流程和数控衰减器电路设计流程分别作了相应的描述。针对不同衰减值的基本衰减位,选择合适的衰减拓扑。通过采用创新的大衰减量衰减结构,既实现了63.5 dB的大衰减量,又满足其衰减精度的要求,还达到了整个单片数控衰减器低插入损耗和高衰减精度的目标。单片电路测试结果为:在3~100 MHz工作频率范围内,插入损耗≤2.2 dB,驻波比≤1.4∶1,衰减范围为0.5~63.5 dB。测试结果表明设计方法有效、可行。电路尺寸为3.5 mm×1.4 mm×0.1 mm,控制电压为0 V和-5 V。  相似文献   

4.
基于π型衰减网络结构,使用软件HFSS设计了工作频率在DC~6 GHz的温度补偿衰减器,并采用厚膜丝网印刷技术,在质量分数96%氧化铝基板上制备出衰减量为(3±0.5)d B和温度系数为N5(–0.005 d B/d B/℃)的温度补偿衰减器,其体积小(3.68 mm×3.12 mm×0.5 mm),采用SMT安装方式,工作温度范围为–55~+125℃,补偿精度高,每摄氏度补偿–0.005 d B/d B。  相似文献   

5.
基于0.25 μm GaAs赝高电子迁移晶体管(pHEMT)工艺,研制了一种1.0~2.4 GHz的放大衰减多功能芯片,该芯片具有低噪声、高线性度和增益可数控调节等特点。电路由第一级低噪声放大器、4位数控衰减器、第二级低噪声放大器依次级联构成,同时在片上集成了TTL驱动电路。为获得较大的增益和良好的线性度,两级低噪声放大器均采用共源共栅结构(Cascode)。测试结果表明,在1.0~2.4 GHz频带范围内,该芯片基态小信号增益约为36 dB,噪声系数小于1.8 dB,输出1 dB压缩点功率大于16 dBm,增益调节范围为15 dB,调节步进1 dB,衰减RMS误差小于0.3 dB,输入输出电压驻波比小于1.5。其中放大器采用单电源+5 V供电,静态电流小于110 mA,TTL驱动电路采用-5 V供电,静态功耗小于3 mA。整个芯片的尺寸为3.5 mm×1.5 mm×0.1 mm。  相似文献   

6.
采用GaAs增强/耗尽型(E/D)赝配高电子迁移率晶体管(PHEMT)工艺研制了一款带数字驱动的Ku波段6bit数控衰减器微波单片集成电路(MMIC)。该MMIC将数字驱动和6bit数控衰减器集成在一起,数字驱动电路采用的是直接耦合场效应晶体管逻辑(DCFL)电路,6bit数控衰减器由6个衰减基本态级联组成。版图经过合理优化后,最终的MMIC芯片尺寸为2.4mm×1.3mm。测试结果表明,在12~18GHz,芯片可以实现最大衰减量为31.5dB,步进为0.5dB的衰减量控制。衰减64态均方根误差小于0.6dB,附加相移-2°~2.5°,插入损耗小于6.1dB,输入输出驻波比均小于1.5∶1。  相似文献   

7.
数控衰减器在宽频带内具有高的衰减精度、优良的电压驻波比和大的衰减动态范围,因而得到了推广和应用。正电控制、低温漂6 bit数控衰减器,各衰减位均采用具有低温漂特性的桥T型结构,并通过对衰减结构的合理构建,在不采用电平转换驱动器的情况下,成功实现正电控制,面积得到进一步缩小。对电路进行了仿真与优化,采用GaAs工艺技术完成了流片,测试结果表明,在2.4~8 GHz频带内,参考态插入损耗小于4.0 dB;衰减精度小于±1 dB@31.5 dB;回波损耗小于-15 dB;衰减量在高温或低温时较常温时的偏差控制在0.3 dB以内;各衰减位为0.5,1,2,4,8和16 dB,最大衰减量为31.5 dB。单片数控衰减器芯片最终尺寸为2.9 mm×1.3 mm,控制电压为0 V和5 V。  相似文献   

8.
齐志华  谢媛媛 《半导体技术》2021,46(12):921-925
基于GaN HEMT工艺成功研制出一款宽带六位数字衰减器,衰减范围为0~31.5 dB.通过研究GaN HEMT开关器件模型及电阻式衰减网络,选取合适的衰减器拓扑,减小了衰减器的插入损耗,提高了衰减精度,缩小了芯片尺寸.测试结果表明,在2~ 18 GHz频带内,该衰减器的插入损耗小于4.8 dB,64态衰减精度均方根误差小于0.6 dB,输入回波损耗小于-13 dB,输出回波损耗小于-12.5 dB,附加相移为-14°~4°.在10 GHz下,其1 dB压缩点输入功率达到34.5 dBm.裸片尺寸为2.30 mm× 1.10 mm.  相似文献   

9.
电调衰减器作为一种重要的有源控制器件,被广泛应用于射频微波电路中,其中PIN二极管电调衰减器最为常见.该文在理论研究的基础上,设计了一个工作在V/UHF波段的双极性电调衰减器.该电调衰减器的工作频段为30MHz ~ 512MHz,波段系数较高,属于超宽带微波器件,电调衰减器采用双极性结构设计,在工作频带内,电调衰减器的动态范围大,可达60dB以上,同时带内平坦度≤±0.5dB,与市场上同类产品相比,该双极性电调衰减器的性能极具优势.  相似文献   

10.
DC~20 GHz宽带单片数控衰减器   总被引:1,自引:0,他引:1  
介绍了五位数控衰减器单片电路的主要技术指标和设计方法.电路设计基于ADS微波设计环境,采用GaAs PHEMT工艺技术实现.利用版图电磁仿真验证技术,实现了全态附加相移小的目标.工作频率为DC~20 GHz,全态衰减附加相移小于等于±3°,驻波比≤1.5:1.通过设计结果和测试结果对比,表明本单片的设计方法可行.最终,单片电路流片一次成功,实现了设计目标.电路尺寸为2.7 mm × 1.4 mm×0.1 mm,控制电压为0 V和-5 V,无直流功耗.  相似文献   

11.
南京电子器件研究所于 2 0 0 2年已研制出 WFD0 0 2 0型 2~ 8GHz Ga As单片可变增益低噪声放大器芯片。该放大器采用南京电子器件研究所 76mm圆片 0 .5 μm PHEMT标准工艺制作而成。它由三级放大器和一个衰减器组成 ,采用 7个 PHEMT、若干无源元件组成 ,高度集成在 3.6mm× 2 .2 mm的 Ga As衬底上。三级放大器的电源为 +5 V,放大器芯片的增益可以由衰减器控制。衰减器连接在第二和第三级放大器之间。测得该芯片工作频率范围为 2~ 8GHz,在零衰减时 ,整个带内增益大于 2 5 d B,噪声系数不大于 3.5 d B,增益平坦度小于± 0 .75 d…  相似文献   

12.
南京电子器件研究所于 2 0 0 2年已研制出 WFD0 0 2 0型 2~ 8GHz Ga As单片可变增益低噪声放大器芯片。该放大器采用南京电子器件研究所 76mm圆片 0 .5 μm PHEMT标准工艺制作而成。它由三级放大器和一个衰减器组成由 7个 PHEMT、若干无源元件组成 ,高度集成在 3.6mm× 2 .2 mm的 Ga As衬底上。三级放大器的电源为 + 5 V,放大器芯片的增益可以由衰减器控制。衰减器连接在第二和第三级放大器之间。测得该芯片工作频率范围为 2~ 8GHz,在零衰减时 ,整个带内增益大于 2 5 d B,噪声系数不大于3.5 d B,增益平坦度小于± 0 .75 d B,输…  相似文献   

13.
介绍了一种新颖的DC~20GHz的4bit和5bit GaAs单片数字衰减器的设计、制造和测试结果.该衰减器的设计采用纵向思维的方法.最终得到的4bit数字衰减器的主要性能指标是:在DC~20GHz频带内,插入损耗≤3.5dB,最大衰减量15dB,衰减步进1dB,衰减平坦度≤0.2dB,衰减精度≤±0.3dB,两端口所有态的电压驻波比≤1.6,相对于参考态,衰减态的插入相移在-10°~5°以内,芯片尺寸1.8mm×1.6mm×0.1mm.5bit数字衰减器的主要性能指标是:在DC~20GHz频带内,插入损耗≤3.8dB,最大衰减量15.5dB,衰减步进0.5dB,衰减平坦度≤0.3dB,衰减精度≤±0.4dB,两端口所有衰减态的电压驻波比≤1.8,相对于参考态,衰减态的插入相移在-14°~2°以内,芯片尺寸2.0mm×1.6mm×0.1mm.  相似文献   

14.
报道一种新型 X波段 0 .2 5 μm PHEMT全单片集成低噪声子系统。该子系统由开关衰减电路、采样检波电路和低噪声放大器三部分组成。开关插入损耗仅 0 .5 d B,放大器噪声系数小于 1 .5 d B。当开关控制电压为-2 V,输入电平 <-7d Bm时 ,此系统相当于一个低噪声放大器。在 8.5~ 1 0 .5 GHz频率内 ,整个系统增益大于2 4d B,噪声系数小于 2 .0 d B,输入输出 VSWR<1 .5 ;但当输入电平 >-7d Bm时 ,采样检波电路开始工作 ,打开主放大器前的开关衰减器 ,限制输入功率进入 LNA。输入功率越大 ,反射越大。在开关控制电压为 +2 V时 ,无论输入功率多大 ,开关关闭通道  相似文献   

15.
研制了工作于液氮温度的高温超导系统使用的新型光控高温超导微波可变衰减器.该衰减器的实质是利用钇钡铜氧(YBCO)高温超导薄膜极低的微波表面电阻和卓越的激光响应特性,达到了优良的衰减性能.主要结果包括:可独立使用的光控高温超导微波可变衰减器样品尺寸为12 mm×8 mm×0.5 mm,与高温超导系统集成时无需外壳,体积与重量将大幅减小;高温超导衰减器的插入损耗小于0.2 dB,比常规衰减器低1个数量级;高温超导衰减器的可变衰减精度小于0.01 dB,比常规衰减器至少低1~2个数量级;在本实验条件下,当激光光斑中心偏移微带线中心0.3、0.5和0.7 mm时,其衰减器插损将由0.08 dB变为0.05、0.03和0.01 dB,说明激光光斑偏移量是影响YBCO高温超导衰减器性能的重要因素.  相似文献   

16.
12dB微波薄膜衰减器的设计与制备   总被引:1,自引:1,他引:0  
基于T型衰减网络结构设计并仿真了工作频率为DC~3GHz的微波薄膜衰减器,并采用磁控溅射法在BeO基片上制备了TaN微波薄膜衰减器。仿真结果表明,所设计的微波薄膜衰减器在DC~3GHz工作频率内,衰减量为12 dB,输入端口电压驻波比小于1.1。测试结果表明,所制备的微波薄膜衰减器在DC~3GHz工作频率内,衰减量为(12.0±0.5)dB。  相似文献   

17.
采用混合集成电路的方法,用并联PIN二极管芯片在很小的腔体内制作广Ku波段吸收式电调衰减器。动态范围大于20dB,电压驻波比小于1.4,插入损耗小于0.85dB,相应变化(插入态/衰减态)小于等于2.7°,传输时间小于100ns,线性度优于10%.驱动电流DC5mA、模块体积9mm(L)×7.6mm(W)×4mm(H)。  相似文献   

18.
一种宽带低功耗电压可变衰减器的研究   总被引:1,自引:0,他引:1  
杨强  周全 《半导体技术》2007,32(4):332-334
采用微波薄膜混合集成电路工艺设计并实现了一种砷化镓场效应管电压可变衰减器,在DC~20 GHz带宽内插入损耗小于3 dB,最大衰减量22 dB,输入输出端口驻波比小于2.0,衰减动态范围在10 dB以内时衰减平坦度小于1 dB.该衰减器采用单电压源控制衰减量变化,控制电压在-2~0 V内变化时,控制端口电流的实测值低于5μA,具有显著的低功耗优点.  相似文献   

19.
文章介绍了基于GaAs0.15μmpHEMT工艺的0.8~18GHz放大衰减多功能芯片的设计,给出了在片测试结果。该芯片集成了共源共栅行波放大单元、三位数控衰减单元和三位并行驱动单元,在0.8~18GHz的超宽带频率范围内,噪声系数典型值≤4.5 dB,增益≥11 dB,且具有3 dB的正斜率,P-1大于13 dBm,输入输出驻波≤1.8,3 bit数控衰减单元2/4/8 dB,衰减精度≤0.5 dB。其中放大器采用单电源+3.3 V供电,工作电流小于60 mA,TTL驱动电路采用-5 V供电,工作电流小于3 mA。芯片尺寸为:2.6 mm×2.8 mm×0.1 mm。  相似文献   

20.
袁配  王玥  吴远大  安俊明  祝连庆 《红外与激光工程》2019,48(8):818004-0818004(7)
波分复用/解复用器与可调光衰减器的是光通信系统中的重要元器件。为了得到制备工艺简单、响应速度快的二者的单片集成芯片,并且考虑到其与其他不同光器件的集成可能性,在绝缘体上硅材料制作了16通道、信道间隔200 GHz的阵列波导光栅复用/解复用器与电吸收型可调光衰减器的单片集成。该器件的片上损耗小于7 dB,串扰小于-22 dB。电吸收型VOA在20 dB的衰减量下的功耗为572 mW (106 mA,5.4 V)。此外,该器件可以实现光功率的快速衰减,在0~5 V的外加方波电压下,VOA上升及下降时间分别为50.5 ns和48 ns。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号