首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen refueling station (HRS) capacity and location depend on the users, which makes it difficult to select the most favorable option before potential users are actually identified. As in Croatia, at least for now, there are no hydrogen users, this study considers a wide range of HRS capacities and their different configurations. These include hydrogen production and charging station within one existing wind farm in Croatia or both nearby the users, the hydrogen production within the wind farm and the charging station nearby the users, while hydrogen is delivered to the station with a tube trailer, and configuration of hydrogen production within the wind farm with a mobile charging station in case of several users in different locations. Each HRS configuration is evaluated by the obtained levelized cost of hydrogen depending on the capital, and operation and maintenance costs within the HRS techno-economic analysis provided.  相似文献   

2.
An integrated energy system coupled with wind turbines and an on-site hydrogen refueling station is proposed to simulate the future scenario, which can meet the demands of cooling, heating, power and hydrogen. The system was modeled to calculate the capacity and annual operation of each equipment with the total annual cost as the optimization objective. This study evaluates the performance of the system based on the results. When the system is configured with 0–10 wind turbines, the economics, energy consumption and carbon emissions improve as the scale of wind turbines increases. Energy utilization and wind power utilization are above 66.79% and 99.73%, respectively. The on-off coefficient of the power generation unit can affect energy efficiency. When the system contains 5 turbines, 91% of the hydrogen can be self-produced with the minimum amount of energy redundancy.  相似文献   

3.
This paper presents a comprehensive technical and economic assessment of potential green hydrogen and ammonia production plants in different locations in Iran with strong wind and solar resources. The study was organized in five steps. First, regarding the wind density and solar PV potential data, three locations in Iran were chosen with the highest wind power, solar radiation, and a combination of both wind/solar energy. All these locations are inland spots, but since the produced ammonia is planned to be exported, it must be transported to the export harbor in the South of Iran. For comparison, a base case was also considered next to the export harbor with normal solar and wind potential, but no distance from the export harbor. In the second step, a similar large-scale hydrogen production facility with proton exchange membrane electrolyzers was modeled for all these locations using the HOMER Pro simulation platform. In the next step, the produced hydrogen and the nitrogen obtained from an air separation unit are supplied to a Haber-Bosch process to synthesize ammonia as a hydrogen carrier. Since water electrolysis requires a considerable amount of water with specific quality and because Iran suffers from water scarcity, this paper, unlike many similar research studies, addresses the challenges associated with the water supply system in the hydrogen production process. In this regard, in the fourth step of this study, it is assumed that seawater from the nearest sea is treated in a desalination plant and sent to the site locations. Finally, since this study intends to evaluate the possibility of green hydrogen export from Iran, a detailed piping model for the transportation of water, hydrogen, and ammonia from/to the production site and the export harbor is created in the last step, which considers the real routs using satellite images, and takes into account all pump/compression stations required to transport these media. This study provides a realistic cost of green hydrogen/ammonia production in Iran, which is ready to be exported, considering all related processes involved in the hydrogen supply chain.  相似文献   

4.
The uncertainty and cost of changing from a fossil-fuel-based society to a hydrogen-based society are considered to be extensive obstacles to the introduction of fuel cell vehicles (FCVs). The absence of existing profitable refueling stations has been shown to be one of the major barriers. This paper investigates methods for calculating an optimal transition from a gasoline refueling station to future methane and hydrogen combined use with an on site small-scale reformer for methane. In particular, we look into the problem of matching the hydrogen capacity of a single refueling station to an increasing demand. Based on an assumed future development scenario, optimal investment strategies are calculated. First, a constant utilization of the hydrogen reformer is assumed in order to find the minimum hydrogen production cost. Second, when considerations such as periodic maintenance are taken into account, optimal control is used to concurrently find both a short term equipment variable utilization for one week and a long term strategy. The result is a minimum hydrogen production cost of $4–6/kg, depending on the number of reinvestments during a 20 year period. The solution is shown to yield minimum hydrogen production cost for the individual refueling station, but the solution is sensitive to variations in the scenario parameters.  相似文献   

5.
Green hydrogen reduces carbon dioxide emission, advances the dependency on fossil fuels and improves the economy of the energy sector, especially in developing countries. Hydrogen is required for the green transportation sector and many other industrial applications. However, the high cost of green hydrogen production reduces the fast development of renewable energy projects based on hydrogen production. So, sizing by optimization is required to determine the optimum solutions for green hydrogen production. In this context, this paper aims to analyze three methods that can be developed and implemented for the production of green hydrogen for refueling stations using photovoltaic (PV) systems. Techno-economic models are adopted to calculate the Levelized Hydrogen Cost (LHC) for the PV grid-connected system, stand-alone PV system with batteries, and stand-alone PV system with fuel cells. The photovoltaic systems based green hydrogen refueling stations are optimized using Homer software. The optimization results of the Net Profit Cost (NPC), and the LHC permit the comparison of the three cases and the selection of the optimal solution. The analysis has shown that a 3 MWp grid-connected PV system represents a promising green hydrogen production at an LHC of 5.5 €/kg. The system produces 58 615 kg of green hydrogen per year reducing carbon dioxide emission by 8209 kg per year. The LHC in the stand-alone PV system with batteries, and stand-alone PV system with fuel cells are 5.74 €/kg and 7.38 €/kg, respectively.  相似文献   

6.
Development of efficient hydrogen refueling station (HRS) is highly desirable to reduce the hydrogen cost and hence the life cycle expense of fuel cell vehicles (FCVs), which is hindering the large scale application of hydrogen mobility. In this work, we demonstrate the optimization of gaseous HRS process and control method to perform fast and efficient refueling, with reduced energy consumption and increased daily fueling capacity. The HRS was modeled with thermodynamics using a numerical integration method and the accuracy for hydrogen refueling simulation was confirmed by experimental data, showing only 2 °C of temperature rise deviation. The refueling protocols for heavy duty FCVs were first optimized, demonstrating an average fueling rate of 2 kg/min and pre-cooling demand of less than 7 kW for 35 MPa type III tanks. Fast refueling of type IV tanks results in more significant temperature rise, and the required pre-cooling temperature is lowered by 20 K to achieve comparable fueling rate. The station process was also optimized to improve the daily fueling capacity. It is revealed that the hydrogen storage amount is cost-effective to be 25–30% that of the nominal daily refueling capacity, to enhance the refueling performance at peak time and minimize the start and stop cycles of compressor. A novel control method for cascade replenishment was developed by switching among the three banks in the order of decreased pressure, and results show that the daily refueling capacity of HRS is increased by 5%. Therefore, the refueling and station process optimization is effective to promote the efficiency of gaseous HRS.  相似文献   

7.
This paper sheds the light on the future of green hydrogen in Tunisia. So, a detailed economic assessment and evaluation of the Levelized Hydrogen Cost (LHC) and the Net Profit (NP) of a Photovoltaic (PV) Hydrogen Refueling Station (HRS) are presented and discussed. Tunisia is characterized by its high PV potential which makes the production of electricity from solar energy an effective alternative source. However, due to the regulations and issues related to the connection of medium PV scale to the power grid, the energy produced from renewable sources (RS) is still less than 3% of the total produced electricity. On the other hand, the price of hydrocarbon fuels is still increasing. The gap between production and total demand in hydrocarbons has created a deficit in the primary energy balance. Therefore, the production of hydrogen from solar energy for refueling Fuel Cell Vehicles (FCV)s consists of a promising solution to boost the development of the country, reduce hydrocarbon fuels consumption, and protect the environment. The sizing of a small PV-HRS to produce 150 kg of hydrogen per day shows the necessity to install PV systems with a total Direct Current (DC) capacity of 1.89 MWp. The Initial Cost (IC) analysis shows that while the PV system cost represents 48.5% of the total IC, the IC of electrolysers represents 41%. The storage system cost is approximately equal to 3.2% of the total IC. The LHC is equal to 3.32€/kg with a total IC of 2.34 million €.  相似文献   

8.
Decentralized electricity generation by renewable energy sources offer greater security of supply for consumers while respecting the environment. But the random nature of these sources requires us to develop sizing rules and use these systems to exploit them. This paper proposes an integrated PV/wind hybrid system optimization model, which utilizes the iterative optimization technique following the Deficiency of Power Supply Probability (DPSP), the Relative Excess Power Generated (REPG), the Total Net Present Cost (TNPC), the Total Annualized Cost (TAC) and Break-Even Distance Analysis (BEDA) for power reliability and system costs. The flow chart of the hybrid optimal sizing model is also illustrated. With this merged model, the optimal size of PV/wind hybrid energy conversion system using battery bank can be performed technically and economically according to the system reliability requirements. Additionally, a sensitivity analysis was carried out in order to appreciate the most important parameters influencing the economic performances of the hybrid system. A case study is conducted to analyze one hybrid project, which is designed to supply small residential household situated in the area of the Center for Renewable Energy Development (CDER) localized in Bouzaréah, Algeria (36°48′N, 3°1′E, 345 m).  相似文献   

9.
Increasing energy demand has led to a substantial growth in the use of wind energy across the world, which can be attributed to the low initial and running costs and rapid and easy deployment of this technology. The development of hydrogen from wind energy is an excellent way to store the excess wind power produced, as the produced hydrogen can be used not only as clean fuel but also as input for various industries. Considering the good wind potentials of Yazd province, the variety of industries that are active in this area, and the central location of this province in Iran, which gives it ample access to major transport routes and other industrial hubs, hydrogen production from wind power in this province could benefit not only this region but the entire country. Given these considerations, we conducted a technical, economic, and environmental assessment of the potential for wind power generation and hydrogen production in Yazd province. Overall, the assessments showed that the best locations for harvesting wind energy in this province are Bahabad and Halvan stations. For these two stations, it is recommended to use EWT DW 52-900 turbine to take advantage of its higher nominal capacity to achieve higher electricity and hydrogen output and emission reduction. For Abarkoh and Kerit stations, which have a low wind energy potential, it is recommended to use small turbines such as Eovent EVA120 H-Darrieus. Also, economic and technical assessments showed that it is not economically justified to harvest wind energy in Ardakan station. The results of ranking the stations with the Step-wise Weight Assessment Ratio Analysis (SWARA) and Evaluation based on Distance from Average Solution (EDAS) techniques showed that Bahabad station was introduced as the best place to produce hydrogen from wind energy.  相似文献   

10.
Cryo-compressed hydrogen storage has excellent volume and mass hydrogen storage density, which is the most likely way to meet the storage requirements proposed by United States Department of Energy(DOE). This paper contributes to propose and analyze a new cryogenic compressed hydrogen refueling station. The new type of low temperature and high-pressure hydrogenation station system can effectively reduce the problems such as too high liquefaction work when using liquid hydrogen as the gas source, the need to heat and regenerate to release hydrogen, and the damage of thermal stress on the storage tank during the filling process, so as to reduce the release of hydrogen and ensure the non-destructive filling of hydrogen. This paper focuses on the study of precooling process in filling. By establishing a heat transfer model, the dynamic trend of tank temperature with time in the precooling process of low-temperature and high-pressure hydrogen storage tank under constant pressure is studied. Two analysis methods are used to provide theoretical basis for the selection of inlet diameter of hydrogen storage tank. Through comparative analysis of the advantages and disadvantages of the two analysis methods, it is concluded that the analysis method of constant mass flow is more suitable for the selection in practical applications. According to it, the recommended diameter of the storage tank at the initial temperature of 300 K, 200 K and 100 K is selected, which are all 15 mm. It is further proved that the calculation method can meet the different storage tank states of hydrogen fuel cell vehicles when selecting the pipe diameter.  相似文献   

11.
Ambient condition, especially the wind condition, is an important factor to determine the behavior of hydrogen diffusion during hydrogen release. However, only few studies aim at the quantitative study of the hydrogen diffusion in a wind-exist condition. And very little researches aiming at the variable wind condition have been done. In this paper, the hydrogen diffusion in different wind condition which including the constant wind velocity and the variable wind velocity is investigated numerically. When considering the variable wind velocity, the UDF (user defined function) is compiled. Characteristics of the FGC (flammable gas cloud) and the HMF (hydrogen mass fraction) are analyzed in different wind condition and comparisons are made with the no-wind condition. Results indicate that the constant wind velocity and the variable wind velocity have totally different effect for the determination of hydrogen diffusion. Comparisons between the constant wind velocity and the variable wind velocity indicate that the variable wind velocity may cause a more dangerous situation since there has a larger FGC volume. More importantly, the wind condition has a non-negligible effect when considering the HMF along the radial direction. As the wind velocity increases, the distribution of the HMF along the radial direction is not Gaussian anymore when the distance between the release hole and the observation line exceeds to a critical value. This work can be a supplement of the research on the hydrogen release and diffusion and a valuable reference for the researchers.  相似文献   

12.
Hydrogen-energy expressway system planning involves load prediction, hydrogen source planning and hydrogen station planning. Exemplary construction of a run-for-profit hydrogen-energy expressway must attach importance to comprehensive evaluation of the effect of investment. The paper analyzes current situation of hydrogen-energy expressway construction, points out that adequate consideration should be given in all aspects of hydrogen energy's life cycle cost, such as hydrogen production, transport, storage, usage, CO2 disposal, carbon tax, hydrogen station's annual construction investment and annual operating expenses. The paper suggests that hydrogen made from discarded electricity of clean energies and hydrogen produced as byproduct during chemical plant production should be utilized to reduce production cost. On the basis of hydrogen energy's life cycle cost analysis, the paper creates a hydrogen station siting optimization model, with the constraints of hydrogen station's supply radius, hydrogen source's productivity and geographic information factor, so as to increase the applicability and level of hydrogen-energy expressway planning effectively.  相似文献   

13.
Studies focused on the behavior of the hydrogen leakage and diffusion are of great importance for facilitating the large scale application of the hydrogen energy. In this paper, the hydrogen leakage and diffusion in six scenarios which including comparison of different leakage position and different wind effect are analyzed numerically. The studied geometry is derived from the hydrogen refueling station in China. Due to the high pressure in hydrogen storage take, the hydrogen leakage is momentum dominated. The hydrogen volume concentration with the variation of the leakage time in different scenarios is plotted. More importantly, profiles of the flammable gas cloud at the end of the leakage are quantitatively studied. Results indicate that a more narrow space between the leakage hole and the obstacle and a smaller contact area with the obstacle make the profile of the flammable gas cloud more irregular and unpredictable. In addition, results highlight the wind effect on the hydrogen leakage and diffusion. Comparing with scenario which the wind direction consistent with the leakage direction, the opposite wind direction may result in a larger profile of the flammable gas cloud. With wind velocity increasing, the profile of the flammable gas cloud is confined in a smaller range. However, the presence of the wind facilitates the form of the recirculation zone near the obstacle. With an increase of the wind velocity, the recirculation zone moves downward along the obstacle. Thus, the hydrogen accumulation is more prominent near the obstacle.  相似文献   

14.
This paper uses the Jobs and Economic Development Impacts (JEDI) model to estimate economic impacts from 1398 MW of wind power development in four counties in west Texas. Project-specific impacts are estimated at the local level (i.e., within a 100-mile radius around the wind farms) and at the state level. The primary economic policy question addressed is how investment in wind energy affects the state and local communities where the wind farms are built. During the four-year construction phase approximately 4100 FTE (full time equivalents) jobs were supported with turbine and supply chain impacts accounting for 58% of all jobs generated. Total lifetime economic activity to the state from the projects equated to more than $1.8 billion, or $1.3 million per MW of installed capacity. The total economic activity to the local communities was also substantial, equating to nearly $730 million over the assumed 20-year life cycle of the farms, or $0.52 million per MW of installed capacity. Given the current level of impacts observed, and the potential for increased impacts via greater utilization of instate manufacturing capacity and the development of trained wind industry specific laborers, Texas appears to be well positioned to see increasing impacts from continued wind development.  相似文献   

15.
The planning of a hydrogen infrastructure with production facilities, distribution chains, and refuelling stations is a hard task. Difficulties may rise essentially in the choice of the optimal configurations. An innovative design of hydrogen network has been proposed in this paper. It consists of a network of green hydrogen refuelling stations (GHRSs) and several production nodes. The proposed model has been formulated as a mathematical programming, where the main decisions are the selection of GHRSs that are powered by the production nodes based on distance and population density criteria, as well the energy and hydrogen flows exchanged among the system components from the production nodes to the demand points. The approaches and methodologies developed can be taken as a support to decision makers, stakeholders and local authorities in the implementation of new hydrogen infrastructures. Optimal configurations have been reported taking into account the presence of an additional hydrogen industrial market demand and a connection with the electrical network. The main challenge that has been treated within the paper is the technical feasibility of the hydrogen supply chain, that is mainly driven by uncertain, but clean solar and wind energy resources. Using a Northern Italian case study, the clean hydrogen produced can be technically considered feasible to supply a network of hydrogen refuelling stations. Results show that the demands are satisfied for each time period and for the market penetration scenarios adopted.  相似文献   

16.
The extensive population growth calls for substantial studies on sustainable development in urban areas. Thus, it is vital for cities to be resilient to new situations and adequately manage the changes. Investing in renewable and green energy, including high-tech hydrogen infrastructure, is crucial for sustainable economic progress and for preserving environmental quality. However, implementing new technology needs an effective and efficient risk assessment investigation to minimize the risk to an acceptable level or ALARP (As low as reasonably practicable). The present study proposes an advanced decision-making framework to manage the risk of hydrogen refueling station leakage by adopting the Bow-tie analysis and Interval-Value Spherical Fuzzy Sets to properly deal with the subjectivity of the risk assessment process. The outcomes of the case study illustrate the causality of hydrogen refueling stations' undesired events and enhance the decision-maker's thoughts about risk management under uncertainty. According to the findings, jet fire is a more likely accident in the case of liquid hydrogen leakage. Furthermore, equipment failure has been recognized as the most likely cause of hydrogen leakage. Thus, in order to maintain the reliability of liquid hydrogen refueling stations, it is crucial that decision-makers develop a trustworthy safety management system that integrates a variety of risk mitigation measures including asset management strategies.  相似文献   

17.
This study aimed to identify the environmental and economic aspects of the wind-hydrogen system using life cycle assessment (LCA) and life cycle costing (LCC) methodologies. The target H2 pathways are the H2 pathway of water electrolysis (WE) with wind power (WE[Wind]) and the H2 pathway of WE by Korean electricity mix (WE[KEM]). Conventional fuels (gasoline and diesel) are also included as target fuel pathways to identify the fuel pathways with economic and environmental advantages over conventional fuels. The key environmental issues in the transportation sector are analyzed in terms of fossil fuel consumption (FFC), regulated air pollutants (RAPs), abiotic resource depletion (ARD), and global warming (GW). The life cycle costs of the target fuel pathways consist of the well-to-tank (WTT) costs and the tank-to-wheel (TTW) costs. Moreover, two scenarios are analyzed to predict potential economic and environmental improvements offered by wind energy-powered hydrogen stations.  相似文献   

18.
Wind data analysis for the Sultanate of Oman is carried out in this study. The results are presented mainly in the form of contour maps, in addition to tabulated data and figures for average wind speed and direction as well as wind availability and power density spanning a period of ten years. The analysis covers diurnal, seasonal and height variations on wind parameters. The data used in the analysis were obtained from NASA Langley Research Center. This analysis provides a needed reference for the spatial distribution of wind characteristics for the whole of Oman from which possible locations for the deployment of wind-based energy conversion systems may be identified.  相似文献   

19.
This work deals with the evaluation of levelized costs of energy and hydrogen of wind farms and concentrated photovoltaic thermal systems. The production of hydrogen is ensured by an alkaline water electrolyser supplied by the electric current generated by the renewable energy sources. The study is carried out on the basis of meteorological data from the Tangier region, in Morocco. Mathematical models are developed to assess the performance and efficiency of renewable sources in terms of energy and hydrogen production for different installed powers. The comparison between the current results and those of previous work shows that the discrepancy did not exceed 6% for both electrical and thermal efficiency of the concentrated photovoltaic/thermal system. The results show that the energy consumption ratios of the electrolyzer are 61 and 64 kWh.kg−1 for wind and solar energy, respectively. Wind and solar hydrogen production efficiencies are also 66 and 62%, respectively. Results show that levelized costs of energy and hydrogen decrease with the increase in installed wind and photovoltaic capacity. The overall results also show that the Tangier region can produce energy and hydrogen at low cost using wind energy compared to concentrated photovoltaic installations. For the hybridization of the two green sources studied, this is highly recommended provided that the capacity of the electrolyzer to be installed is optimal in order to effectively improve the production of hydrogen.  相似文献   

20.
The use of hydrogen produced from renewable energy enables the reduction of greenhouse gas (GHG) emissions pursued in different international strategies. The use of power-purchase agreements (PPAs) to supply renewable electricity to hydrogen production plants is an approach that can improve the feasibility of projects. This paper presents a model applicable to hydrogen projects regarding the technical and economic perspective and applies it to the Spanish case, where pioneering projects are taking place via photovoltaic PPAs. The results show that PPAs are an enabling mechanism for sustaining green hydrogen projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号