首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(7):9788-9796
In recent years, the need for robust thermal protection for reusable spacecraft and vehicles has spurred strong demand for high-performance lightweight thermal insulation materials that exhibit high strength. Herein, we report silica porous ceramics prepared via the direct foaming technique with lightweight, ultra-low thermal conductivity and enhanced compressive strength. Silica particles (particle size: 500 nm and 2 μm) were used as the raw materials. The nano-sized silica particles were easily sintered, thereby improving the compressive strength of the ceramics, whereas the micro-sized silica particles maintained the pore structure integrity without deformation. The addition of nano-silica enhanced the compressive strength by 764% (from 0.039 to 0.337 MPa). In addition, the thermal conductivity of the ceramics was as low as 0.039 W m?1 K?1. Owing to these outstanding characteristics, these porous silica ceramics are expected to be employed as thermal insulation material in diverse fields, especially aerospace and space where weight is an important constraint.  相似文献   

2.
Porous MgAl2O4 ceramics designated as THERMOSCATTTM have diffuse reflectance based on the Mie theory. The reflectance greatly suppresses radiation heat transfer and has low emissivity at 1–5 μm wavelengths. Their thermal conductivity has been measured as less than 0.3 W/(m K) at 1500°C. Furthermore, porous MgAl2O4 ceramics have near-zero hemispherical spectral emissivity values at 0.35–5 μm wavelengths. High heat resistance and low emissivity materials in the atmosphere are useful for the innermost layer of industrial furnaces to confine energy efficiently. Additionally, this material is useful as a radiation reflectors, such as in stand-off thermal protection systems. This study elucidated the suppression of radiation transfer in porous MgAl2O4 ceramics attributable to low thermal emissivity. Therefore, the thermal insulation performance under radiation heating in vacuum, the emissivity validity evaluation of low-emissivity porous materials using finite element analysis, and microstructure effects on radiation heating performance and mechanical properties were investigated.  相似文献   

3.
In this work, porous ZrC-SiC ceramics with high porosity and low thermal conductivity were successfully prepared using zircon (ZrSiO4) and carbon black as material precursors via a facile one-step sintering approach combining in-situ carbothermal reduction reaction (at 1600 °C for 2 h) and partial hot-pressing sintering technique (at 1900 °C for 1 h). Carbon black not only served as a reducing agent, but also performed as a pore-foaming agent for synthesizing porous ZrC-SiC ceramics. The prepared porous ZrC-SiC ceramics with homogeneous microstructure (with grain size in the 50–1000 nm range and pore size in the 0.2–4 µm range) possessed high porosity of 61.37–70.78%, relatively high compressive strength of 1.31–7.48 MPa, and low room temperature thermal conductivity of 1.48–4.90 W·m?1K?1. The fabricated porous ZrC-SiC ceramics with higher strength and lower thermal conductivity can be used as a promising light-weight thermal insulation material.  相似文献   

4.
Lanthanum zirconate (LZO) ceramic foams with hierarchical pore structure were fabricated by particle-stabilized foaming method for the first time, and the as-prepared ceramics have high porosity of 90.7%-94.9%, low thermal conductivity, and relatively high compressive strength. The LZO powder was synthesized by solid-state method. The porosity of the ceramic foams was tailored by suspensions with different solid loadings (20-40 wt%). The sample with porosity of 94.9% has thermal conductivity of 0.073 W/(m·K) and compressive strength of 1.19 MPa, which exhibits outstanding property of thermal insulation and mechanical performance, indicating that LZO ceramic foam is a promising thermal insulation material in high temperature applications.  相似文献   

5.
《Ceramics International》2016,42(13):14843-14848
A novel fibrous porous mullite network with a quasi-layered microstructure was produced by a simple vacuum squeeze moulding technique. The effects of organic binder content, inorganic binder and adsorbent on the microstructure and the room-temperature thermal and mechanical properties of fibrous porous mullite ceramics were systematically investigated. An anisotropy microstructure without agglomeration and layering was achieved. The fibrous porous mullite ceramics reported in this study exhibited low density (0.40 g/cm3), low thermal conductivity (~0.095 W/(m K)), and high compressive strength (~2.1 MPa in the x/y direction). This study reports an optimal processing method for the production of fibrous porous ceramics, which have the potential for use as high-temperature thermal insulation material.  相似文献   

6.
《Ceramics International》2022,48(20):29882-29891
A simple strategy for preparing MgO–Al2O3–CaO-based porous ceramics (MACPC) with high strength and ultralow thermal conductivity has been proposed in this work based on the raw material of phosphorus tailings. The effects of phosphorus tailings content, carbon black addition and heat treatment temperature on the properties of MACPC were studied, and their pore-forming mechanism during sintering was revealed. The results showed that the main phase composition of MACPC was magnesia alumina spinel and calcium aluminate after sintering at 1225 °C. Furthermore, the MACPC exhibited excellent comprehensive properties when 60 wt% phosphorus tailings and 40 wt% alumina were added, whose apparent porosity was 62.8%, cold compressive strength was 14.8 MPa, and the thermal conductivity was 0.106 W/(m·K) at 800 °C. The synchronously enhanced strength and thermal insulation properties of MACPC were related to the formation of uniformly distributed micropores (<2 μm) and passages in the matrix, which originated from the decomposition of phosphorus tailings and the burnt out of carbon black during the sintering process. The preparation of MACPC with high temperature resistance and excellent mechanical and thermal insulation properties with the raw material of phosphorus tailings provided an effective method for the high-value utilization of phosphorus tailings.  相似文献   

7.
Porous lead zirconate titanate (PZT) ceramics could be produced by combining the particle-stabilized foams and the gelcasting technique. In this study, the foaming capacity of particle-stabilized wet foams was tailored by changing the concentration of valeric acid and pH values of suspension. Accordingly, porous PZT ceramics with different porosity, microstructure, dielectric and piezoelectric properties were prepared with the respective wet foam. Increase in the porosity led to a reduction in the relative permittivity (εr), a moderate decline in the longitudinal piezoelectric strain coefficient (d33) and a rapid decline in the transverse piezoelectric strain coefficient (d31), which endowed porous PZT ceramics with a high value of hydrostatic strain coefficient (dh) and hydrostatic figure of merit (HFOM). As a result, the prepared samples possessed a maximal HFOM value of 19,520×10?15 Pa?1 with the porosity of 76.3%. The acoustic impedance (Z) of specimens had the lowest value of 1.35 Mrayl, which could match well with those of water or biological tissue; accordingly, the material would be beneficial in underwater sonar detectors or medical ultrasonic imaging.  相似文献   

8.
Due to the low density, low thermal conductivity and low water absorption, porous glass-ceramics have demonstrated excellent performance for thermal insulation. Closed pore structure can greatly reduce the thermal conductivity and convection as well as achieve high mechanical strength. However, yet it is difficult to realize closed pore structure due to the critical preparation condition. Here we use Fe2O3, which is the by-product of copper tailings, to optimize the pores structures of the porous glass-ceramics and facilitate the formation of uniform closed pore structure. The porous glass-ceramics were prepared by melting-quenching method, followed by sufficiently foaming through powder sintering route with SiC powders as foaming agent. The foaming process, micro structure, pore structure and thermal insulation performance were directly observed by heating microscope, scanning electron microscope (SEM), X-ray computed tomography and infrared thermal imager. The results show that the addition of Fe2O3 modified the depolymerization degree of the glass network and increased the numbers of non-bridged oxygen, decreasing the foaming temperature. The resultant closed pore structure showed a better thermal insulating performance than open pore structure. Accordingly, we achieved a low thermal conductivity of 0.19 W·m?1·K?1 with the highest specific strength of 19.55 MPa·g?1·cm?3 based on closed pore structure.  相似文献   

9.
Aluminum borate porous ceramics are excellent candidates for high-temperature insulation applications. Current research on aluminum borate-based porous ceramics mainly focuses on porous ceramics made up of aluminum borate whiskers, whose low aspect ratio leads to a relatively dense porous structure; this results in porous ceramics with low porosity and relatively high thermal conductivity. In this study, we report the manufacturing of aluminum borate nanofibrous porous ceramics by an agar-based gel casting method using electrospun nanofibers with a high aspect ratio as the three-dimensional skeleton structure. We explored the effect of the alumina/boron oxide molar ratio on the microscopic morphology and crystal phase composition of the aluminum borate nanofibers and that of the sintering temperature on the micro and macro properties of porous ceramics based on the nanofibers. The results showed that aluminum borate nanofibers with an alumina/boron oxide molar ratio of 7:2 had the densest microscopic morphology, and the corresponding porous ceramics exhibited a higher porosity (91%) and lower thermal conductivity (0.11 W m?1 K?1) after sintering at 1200 °C than aluminum borate porous ceramics with aluminum borate whiskers as the skeleton. The successful synthesis of aluminum borate nanofibrous porous ceramics provides new insights into the development of high-temperature insulators.  相似文献   

10.
《Ceramics International》2023,49(2):2394-2400
It is well known that aqueous gel-casting is challenging to prepare high-porosity ceramics due to the considerable drying shrinkage, cracking, and deformation of green bodies during drying caused by the high surface tension of water. Porous Y2SiO5 ceramics with high porosity were prepared by introducing carbon fibers as a support material in the drying process of aqueous gel-casting to reduce shrinkage during drying. Burning out the carbon fibers after drying does not negatively affect the properties of the porous ceramic. As prepared green bodies by aqueous gel-casting have low shrinkages of 8.69%–6.81% during drying processes and high compressive strength of 13.73 ± 1.55–10.66~0.49 MPa. The higher compressive strength of the green body has a positive significance for processing porous ceramics into special-shaped structures. As prepared porous Y2SiO5 ceramics have high porosity of 73.94%–87.71%, lightweights of 1.16–0.55 g?cm3, extremely low thermal conductivities of 0.134 ± 0.006 to 0.051 ± 0.001 W?m?1?k?1, relatively low dielectric constants of 2.34–1.58, and tan δ are lower than 1.25 × 10?3. Porous Y2SiO5 ceramics with excellent dielectric properties and thermal insulation properties meet the requirements of thermal insulation and wave transmission integration of radome materials. Aqueous gel-casting also enriches the preparation methods of high-porosity Y2SiO5 ceramics.  相似文献   

11.
《Ceramics International》2023,49(7):11038-11046
The inherent brittleness of fibrous porous ceramics (FPCs) results in their fragility, limiting their application in thermal protection. In this paper, a novel elastic fibrous porous ceramic (EFPCs) with quasi-layered structure were successfully prepared by facile press-filtration method. To further investigate the characteristics of EFPCs, the effect of fiber aspect ratio and fabrication temperature on the microstructures and properties were studied. Results demonstrated that both fiber aspect ratio and fabrication temperature had influence on the microstructure and mechanical properties on EFPCs. The prepared EFPCs exhibited low density (0.124–0.181 g cm?3), relatively high compressive stress (0.096–0.377 MPa) compared to flexible fibrous ceramics, high porosity (91.73%–94.86%) and low thermal conductivity (~0.03 W m?1 k?1). According to these excellent properties, the EFPCs may have potential use in thermal insulation fields.  相似文献   

12.
《应用陶瓷进展》2013,112(4):204-209
Porous mullite ceramics were prepared at 1300–1600°C for 2?h via a foam-gelcasting route using industrial-grade mullite powders as the main raw material, Isobam 104 as the dispersing and gelling agent, triethanolamine lauryl sulphate as the foaming agent and sodium carboxymethyl cellulose as the foam stabilising agent. The effects of firing temperature on the sintering behaviour of green samples as well as microstructures and properties of final porous mullite products were investigated. With increasing the temperature from 1300 to 1600°C, linear shrinkage and bulk density values of fired samples increased, whereas their porosity decreased. Mechanical strength and thermal conductivity values of fired samples decreased with increasing their porosities. Even at a porosity level as high as 79.4%, compressive and flexural strengths of fired samples (with average pore size of 314?μm) remained as high as 9.0 and 3.7?MPa, respectively, and their thermal conductivity (at 200°C) remained as low as 0.21?W?(m?1?K?1).  相似文献   

13.
《Ceramics International》2022,48(21):31984-31994
Realizing integration of admirable load bearing and outstanding heat insulation characteristics of porosity-controlled ceramics for hypersonic vehicles is a great challenge. Herein, an ingenious strategy based on re-pyrolysis process of ball-milling-induced fillers/precursors(pore-forming agents) blends is proposed to prepare porous SiC(rGO) bulk polymer-derived ceramics (PDCs) for thermal protection. During re-pyrolysis, dense integrated β-SiC/SiOxCy/Cfree(rGO) framework, belonging to SiC(rGO)p tightly tied by SiC(rGO) from polycarbosilane-vinyltriethoxysilane-graphene oxide (PCS-VTES-GO, PVG), can be formed to maintain brilliant mechanical properties of products. Meanwhile, good interfacial compatibility of nanocomposite structure within the framework also contributes to load capacity. A uniquely uniform distribution of dentinal tubules-like pores, originated from polystyrene (PS) in SiC(rGO) region, could relax stress at crack tips and ensure good thermal insulation. Particularly, lightweight porous SiC(rGO) bulk PDCs with 10 wt% PS content possess low thermal conductivity (0.25 W·m?1·K?1), excellent fracture toughness (1.96 MPa·m1/2), outstanding hardness (3.58 GPa), optimal compressive strength (51.80 MPa) and good flexural strength (33.86 MPa). Their large-sized molding ability and good high-temperature oxidation resistance were significantly demonstrated by further exploration. Such well-balanced high load bearing and good heat insulation integration nature can be used to make thermal insulators with complex shapes in a facile and economical manner.  相似文献   

14.
《Ceramics International》2016,42(16):18215-18222
Porous MgAl2O4 ceramics were prepared via a low cost foam-gelcasting route using MgAl2O4 powders as the main raw material, ammonium polyacrylate as a dispersant, a small amount of modified carboxymethyl cellulose as a gelling agent, and TH-IV polymer as a foaming agent. The effects of additive's content, solid loading and gelling temperature on slurry's rheological behavior were investigated, and microstructures and properties of as-prepared porous MgAl2O4 ceramics examined. Based on the results, the roles played by the foaming agent in the cases of porosity, pore structure, pore size, mechanical properties and thermal conductivity were clarified. Porosity and pore sizes of as-prepared porous MgAl2O4 ceramics increased with increasing the foaming agent from 0.05 to 0.6 vol%. Porous MgAl2O4 ceramics with porosity of 75.1% and average pore size of 266 µm exhibited a compressive strength as high as 12.5±0.8 MPa and thermal conductivity as low as 0.24 W/(m K) (at 473 K).  相似文献   

15.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   

16.
《Ceramics International》2023,49(6):8945-8951
Phase change materials (PCMs) applied in energy storage and temperature control system are important for energy conservation and environmental protection. In this work, structure-adjustable water-borne polyurethane (WPU)/boron nitride (BN) aerogels were synthesized via directional freeze-drying method, and used as supporting scaffolds to confine paraffin wax (PW) and obtain composite phase change materials. The three-dimensional (3D) porous thermal conductivity network of BN was derived by the in-situ ice crystal mound in aerogel, which endows the PW/WPU/BN composite PCM-2.5 with high thermal conductivity (0.96 W m?1 K?1) and high energy storage density (140.04 J/g). Shape-stabilized PCMs with high thermal conductivity and excellent electrical insulation prepared by the simple method have great potential for the thermal management of electronic products.  相似文献   

17.
《Ceramics International》2022,48(8):10472-10479
Porous mullite ceramics are widely used in heat insulation owing to their high temperature and corrosion resistant properties. Reducing the thermal conductivity by increasing porosity, while ensuring a high compressive strength, is vital for the synthesis of high-strength and lightweight porous mullite ceramics. In this study, ceramic microspheres are initially prepared from pre-treated high-alumina fly ash by spray drying, and then used to successfully prepare porous mullite ceramics with enhanced compressive strength via a simple direct stacking and sintering approach. The influence of sintering temperature and time on the microstructure and properties of porous mullite ceramics was evaluated, and the corresponding formation mechanism was elucidated. Results show that the porous mullite ceramics, calcined at 1550 °C for 3 h, possess a porosity of 47%, compressive strength of 31.4 MPa, and thermal conductivity of 0.775 W/(m?K) (at 25 °C), similar to mullite ceramics prepared from pure raw materials. The uniform pore size distribution and sintered neck between the microspheres contribute to the high compressive strength of mullite ceramics, while maintaining high porosity.  相似文献   

18.
In order to meet the demand for thermal insulation and sound absorption, fibrous porous mullite ceramics (FPMC) with high porosity and an interconnected pore structure were prepared, followed by a pore structure modification with in situ grown mullite whiskers on the three-dimensional framework of the FPMC. The resultant hierarchical material exhibited superior sound absorption performance in the low-to-medium frequency to most reported sound-absorbing materials, as well as a sufficient compressive strength of 1.26 MPa with low thermal conductivity of 0.117 W·m?1·K?1. Moreover, the effects of solid content and mullite whiskers on the microstructure and physical properties of the material were analyzed. The increase of solid content led to increased compressive strength and thermal conductivity and decreased frequency corresponding to the first sound absorption peak. The thermal conductivity and compressive strength of the material increased as the mullite whiskers grew, while the median pore size decreased.  相似文献   

19.
How to improve the strength of fibrous porous ceramics dramatically under the premise of no sacrificing its low density and thermal conductivity has remained a challenge in the high-temperature thermal insulation field. In this paper, a new kind of high-strength mullite fiber-based ceramics composed of interlocked porous mullite fibers was prepared by nanoemulsion electrospinning and dry pressing method. Results show that as to the porous ceramics with the same density (~ 0.8 g/cm3), the three-dimensional skeleton structure composed of porous mullite fibers was much denser than that composed of solid mullite fibers. Therefore, porous mullite fiber-based ceramics exhibited a higher compressive strength (5.53 MPa) than that of solid mullite fiber-based ceramics (3.21 MPa). In addition, porous mullite fiber-based ceramics exhibited a superior high-temperature heat insulation property because the porous structure in fibers could reduce the radiant heat conduction. This work provides new insight into the development of high-temperature thermal insulators.  相似文献   

20.
《Ceramics International》2017,43(7):5478-5483
Porous fibrous mullite ceramics with a narrow range of pore size distribution have been successfully prepared utilizing a near net-shape epoxy resin gel-casting process by using mullite fibers, Al2O3 and SiC as raw materials. The effects of sintering temperatures, different amounts of fibers and Y2O3 additive on the phase compositions, linear shrinkage, apparent porosity, bulk density, microstructure, compressive strength and thermal conductivity were investigated. The results indicated that mullite-bonded among fibers were formed in the porous fibrous mullite ceramics with a bird nest pore structure. After determining the sintering temperatures and the amount of fibers, the tailored porous fibrous mullite ceramics had a low linear shrinkage (1.36–3.08%), a high apparent porosity (61.1–71.7%), a relatively high compressive strength (4.4–7.6 MPa), a low thermal conductivity (0.378–0.467 W/m K) and a narrow range of pore size distribution (around 5 µm). The excellent properties will enable the porous ceramics as a promising candidate for the applications of hot gas filters, thermal insulation materials at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号