首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A physical geometric model of the dynamic growth of thermally grown oxide (TGO) was established based on an analysis of the TGO growth of 8YSZ thermal barrier coatings during thermal cycling. Finite-element simulation was used to simulate the evolution law between the coating residual stress and thermal cycling, and the linear elasticity, creep effect, and stress accumulation in each thermal cycle were studied. The interface between the top coat (TC) and the bond coat (BC) was covered with a TGO layer that grew vertically and slowly in a layer-like manner. The stress in the TGO was distributed with a “layer” zonal gradient, and the TGO/BC boundaries were distributed uniformly with a large compressive stress, which decreased the TGO layer thickening. With the longitudinal rapid random TGO growth, the boundaries were subjected to a tensile stress, and a high tensile stress concentration area developed at the boundaries. The internal stress consisted of an alternating and mixed distribution of concentrated compressive and tensile stresses. The concentration area of the maximum equivalent stress was distributed in the one-layer TGO near the TC/TGO interface. When a microcrack formed at the TGO/BC boundaries, the crack was subjected to a tensile stress of different size, with a higher tensile stress at both ends, which facilitated crack expansion. Thus, the 8YSZ thermal barrier coating was prone to crack formation and expansion at the TGO/BC boundaries and in the TGO layer near the TC/TGO boundaries.  相似文献   

2.
《Ceramics International》2022,48(5):6185-6198
In this study, a La0.8Ba0.2TiO3?δ (LBT) upper layer was deposited on an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) through atmospheric plasma spraying. The thermal cycling behaviors of the YSZ single-ceramic-layer and LBT–YSZ double-ceramic-layer coatings at 1000 °C were investigated through a water quenching method. Moreover, phases, microstructural evolution, and elemental distributions were studied through by X-ray diffraction and scanning electron microscopy–energy-dispersive X-ray spectroscopy. The results showed that the thermal cycling lifetime of the LBT–YSZ coating was 27% higher than that of conventional YSZ coating. The conventional YSZ coating failed after 251 cycles because of the joining of the continuous horizontal and vertical cracks caused by the formation of thermal growth oxides and the bending effect of the single-ceramic-layer structure. The thermal cycling behavior of the LBT–YSZ coating was different from that of the YSZ coating at the edge and center. Although the former was similar to the failure behavior of the YSZ coating, the cracks in the vertical direction were deflected as a result of the bending effect of the double-ceramic-layer structure during quenching. This deflection led to the formation of slope cracks with longer propagation paths and slope spallation zones. The latter showed small-debris spallation on top of the LBT upper layer due to the lower fracture toughness of the LBT, which protected the central coating from the structural damage of the ceramic coating. These two behaviors would either release the thermal stress or increase the crack-propagation energy requirement in the ceramic coating, consequently improving the thermal cycling lifetime of the LBT–YSZ coating. In summary, depositing an LBT upper layer could potentially improve the thermal cycling lifetimes of TBCs.  相似文献   

3.
The PS-PVD method was used to prepare 7YSZ thermal barrier coatings (TBCs) and NiCrAlY bond coatings on a DZ40 M substrate. To prevent oxidation of the coating, magnetron sputtering was used to modify the surface of TBCs with an Al film. To explore the stability of TBCs during thermal cycling, water quenching was performed at 1100 °C, and ultralong air cooling for 16,000 cycles was performed. The results showed that before water quenching and air cooling, the top surface structure of the 7YSZ TBCs changed. After water quenching, the surface of the Al film was scoured and broken, the surface peeled off layer-by-layer, and cracks formed at the interface between the thermally grown oxide and NiCrAlY. During air cooling of the thermal cycle, the Al film reacted with O2 in the air to form a dense Al2O3 top layer that coated the cauliflower-like 7YSZ surface and maintained the feather-like shape. At the same time, the TGO layer between 7YSZ and NiCrAlY grew and cracked. The two thermal cycles of water quenching and air cooling led to different failure mechanisms of TBCs. Water quenching failure was caused by layer-by-layer failure of the 7YSZ top coat, while air cooling failure occurred due to the internal cracking of the TGO layer at the 7YSZ/NiCrAlY interface and the failure of the TGO/NiCrAlY interface.  相似文献   

4.
《Ceramics International》2022,48(5):6443-6452
Two types of Y2O3 partially stabilized ZrO2(YSZ)-based agglomerated powders with and without SiC whiskers were prepared by spray granulation, and the flow ability, apparent density and particle size distribution of them were investigated. The thermal cycling performance and failure mechanism of conventional high temperature sealing coating and modified one with additional layer with whiskers, which were sprayed by air plasma spraying (APS), were comparatively analyzed. The results showed that, compared to the powder without whiskers, the flow ability of that with whiskers reduced by 2.32%, and the apparent density and the proportion of 45–150 μm agglomerated powder increased by 1.53% and 2.29%, respectively. The thermal cycling failure mode of conventional high temperature sealing coating was the overall spalling of ceramic coating, and the spalling position originated from the interface of thermally grown oxide (TGO)/ceramic coating. Microstructure observation indicated that the structure integrity of SiC whiskers in the additional layer sprayed by APS was still retained. The whiskers were uniformly distributed and theinterface between bonding coating and ceramic coating exhibited excellent bonding. With the additional layer containing whiskers, the thermal cycling life of the coating was increased by 102.53%. In the thermal cycling process, the “bridging” and “pulling-out” effects of whiskers located at the additional layer consumed considerable energy, which could reduce the driving force of crack growth. Besides, a porous structure of the additional layer after thermal cycling was formed due to “bridging” and “pulling-out” of whiskers, further improving the thermal cycling life of coating with the additional layer.  相似文献   

5.
《Ceramics International》2020,46(1):813-823
In this work, the growth of thermally grown oxides (TGO) on Pt–Al and NiCrAlY bond coats and the element diffusion behavior were investigated. During oxidation, TGO initiated at YSZ/Pt–Al interface developed from a α-Al2O3 mono-layer to a α-Al2O3+NiO/α-Al2O3 double-layer with the increase of thermal cycling temperature. While for YSZ/NiCrAlY coating, after exposed at 1100 °C for 240 h, a double-layered TGO was formed at the interface of NiCrAlY/substrate. It is composed of an upper layer of α-Al2O3, Cr2O3 and NiCr2O4 mixture and a bottom layer of α-Al2O3. After the coating was thermal cycled at 1200 °C for 96 h, a triple-layered TGO was generated containing a bottom layer of α-Al2O3, a middle layer of Al2O3 and Cr2O3, and an upper layer of mixed α-Al2O3, Cr2O3 and NiCr2O4. The multi-layered structure of TGO is caused by the difference of element diffusion rate and formation energy of oxides. It facilitates the alternative accumulation and release of stress. Thus, the consequent service life of YSZ/Pt–Al coating is better than that of YSZ/NiCrAlY coating.  相似文献   

6.
LaTi2Al9O19 (LTA) is one of the most promising materials for new thermal barrier coatings (TBCs) to fulfill the demand of advanced gas turbines owing to its high temperature stability and low thermal conductivity. In the present study, a finite element (FE) based numerical study has been carried out to investigate the stress distribution in LTA single layered coating system in comparison with traditional yttria stabilized zirconia (YSZ) TBC. Stresses in YSZ/LTA double ceramic layer TBC system are also determined and presented for comparative analysis. The thermal cycling effect is simulated by sequent increment in TGO thickness in a series of FE simulations. In-plane stresses (σxx), out-of-plane stresses (σyy) and shear stresses (σxy) are determined for all systems, and peak stress values are presented for quantitative comparison. Elastic strain energy stored in TGO of all systems is calculated from FE results for TBC structural integrity assessment. It has been found that maximum in-plane and shear stresses are lower in the double ceramic layer coating system than in the single layer ceramic coating system. However, peak axial tensile and compressive stresses in the double ceramic layer coating are very close or higher than those in the single layer topcoat. Calculation of elastic store energy shows that double ceramic layer TBC system may exhibit better stability as compared to single layer systems. Results are presented to explain the failure mechanism in LTA coatings.  相似文献   

7.
《Ceramics International》2022,48(24):36450-36459
In the present work, YSZ TBCs and 10 wt% CeO2-doped YSZ thermal barrier coatings (CeYSZ TBCs) were prepared via atmospheric plasma spraying(APS) respectively, whereupon high temperature oxidation experiment was carried out at 1100 °C to compare the high temperature oxidation behavior and mechanism of the two TBCs. The results showed that the doping of CeO2 reduced the porosity of YSZ TBCs by 23%, resulting in smaller oxidation weight gain and lower TGO growth rates for CeYSZ TBCs. Besides, the TGO generated in CeYSZ TBCs was obviously thinner and there were fewer defects inside it. For YSZ TBCs, as the oxidation process proceeded, Al, Cr, Co and Ni elements in the bonding coating were oxidized successively to form loose and porous spinel type oxides (CS), which was apt to cause the spalling failure of TBCs. While, the Al2O3 layer of the TGO generated in CeYSZ TBCs ruptured later than that in YSZ TBCs, which delayed the oxidation of Cr, Co, and Ni elements and the formation of CS accordingly. Therefore, CeO2 doping can effectively improve the high temperature oxidation resistance of YSZ TBCs.  相似文献   

8.
Processing of Gd2Zr2O7 by atmospheric plasma spraying (APS) is challenging due to the difference in vapor pressure between gadolinia and zirconia. Gadolinia is volatilized to a greater extent than zirconia and the coating composition unfavorably deviates from the initial stoichiometry. Aiming at stoichiometric coatings, APS experiments were performed with a TriplexPro? plasma torch at different current levels. Particle diagnostics proved to be an effective tool for the detection of potential degrees of evaporation via particle temperature measurements at these varied current levels. Optimized spray parameters for Gd2Zr2O7 in terms of porosity and stoichiometry were used to produce double‐layer TBCs with an underlying yttria‐stabilized zirconia (7YSZ) layer. For comparison, double layers were also deposited with relatively high torch currents during Gd2Zr2O7 deposition, which led to a considerable amount of evaporation and relatively low porosities. These coatings were tested in thermal cycling rigs at 1400°C surface temperature. Double layers manufactured with optimized Gd2Zr2O7 spray parameters revealed very good thermal cycling performance in comparison to standard 7YSZ coatings, whereas the others showed early failures. Furthermore, different failure modes were observed; coatings with long lifetime failed due to TGO growth, while the coatings displaying early failures spalled through crack propagation in the upper part of the 7YSZ layer.  相似文献   

9.
Gadolinium zirconate (GZ) is an attractive material for thermal barrier coatings (TBCs). However, a single layer GZ coating has poor thermal cycling life compared to Yttria Stabilized Zirconia (YSZ). In this study, Solution Precursor High Velocity Oxy-Fuel (SP-HVOF) thermal spray was used to produce a double layer GZ/YSZ TBC and compared the thermal cycling performance with the single layer YSZ TBC. The temperature behaviour of the solution precursor GZ was studied, and single splat tests were carried out to obtain an optimised spray parameter. In thermal cycling tests, the single-layer YSZ reached 20 % failure at 85 ± 5 cycles, whereas the double-layer GZ/YSZ was at 70 ± 15 cycles. The single-layer failed at the topcoat/TGO interface, whereas the double-layer failed at GZ/YSZ interface and topcoat/TGO interface. Moreover, Gd diffusion occurred near the GZ/YSZ interface, resulting in porosities in the GZ layer.  相似文献   

10.
In this research work, aluminium oxide/yttria stabilized zirconia (20%Al2O3/80%8YSZ) and ceria/yttria stabilized zirconia (20%CeO2/80%8YSZ) were coated through atmospheric plasma spray technique (APS) as thermal barrier coating (TBC) over CoNiCrAlY bond coat on aluminium alloy (Al-13%Si) substrate piston crown material and their thermal cycling behavior were studied experimentally. Thermal cycle test of both samples were conducted at 800?°C. Microstructural, phase and elemental analysis of the TBC coatings were experimentally investigated. The performance, combustion and emission characteristics of Al2O3/8YSZ, CeO2/8YSZ TBC coated and uncoated standard diesel engine were experimentally investigated. The test results revealed that CeO2/8YSZ based TBC has an excellent thermal cycling behavior in comparison to the Al2O3/8YSZ based TBC. The spallation of the Al2O3/8YSZ TBC occurred mainly due to the formation of thermally grown oxide (TGO), and growth of residual stresses at top coating and bond coating interface. The experimental results also revealed that the increase of brake thermal efficiency and reduction of specific fuel consumption for both TBC coated engine. Further reduction of HC, CO and smoke and increase of NOx emission were recorded for both TBC coated engine compared to the standard diesel engine.  相似文献   

11.
Novel ceramic topcoat of Gd2O3–Yb2O3–Y2O3 co-stabilized ZrO2 (GYbYSZ) thermal barrier coatings were fabricated via EB-PVD technique. The phase structural stability, phase constituent, chemical composition, morphology and cyclic oxidation of the thermal barrier coatings (TBCs) were systematically studied. Based on the XRD results, the GYbYSZ ceramics has not undergone phase transformation upon long-term annealing at 1373 K and 1523 K. Although the chemical content of the GYbYSZ ceramic coat deviates from the stoichiometric value, the coating is mostly composed of cubic phase, which is accord with the XRD pattern of the original ingot. A pyramidal-like morphology appears in the microtexture of the column tips and the measured diameters of the pyramids are about 2.5~4 μm. After thermal cycling, the surface of the coating presents a multi-layer structure, which is followed by layer-by-layer spallation. The failure zone of the ceramic coats is possible to occur the interior of the thermally grown oxide (TGO) layer, or within the top ceramic coat at the interface of bond coat/TGO layers. The degradation of GYbYSZ TBCs is primarily attributed to the accumulation and relaxation of residual stress, propagation of vertical through microcracks, the growth rumpling of TGO layer, the ridges of grain boundary and the abnormal oxidation of bond coat.  相似文献   

12.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

13.
《Ceramics International》2020,46(6):7489-7498
The thermal shock behavior of a thermal barrier coating (TBC) prepared by plasma spraying at 1100 °C was investigated. The TBC consisted of a double layer structure of 8YSZ/CoCrAlYTaSi. The morphology, microstructure, phases and the elemental distribution of the TBCs were characterized using scanning electron microscopy (SEM), transmission electron microscope (TEM), scanning transmission electron microscope (STEM), X-ray diffraction (XRD) and electron probe micro-analysis (EPMA). The characterization results showed that the film consisted primarily of metastable tetragonal phases (t′), and a large number of micro-cracks were present in the 8YSZ crystals. Following eighty-six thermal shock cycles of the specimens a large areal spallation was observed on the 8YSZ coating. The decreased concentration of yttrium at the coating interfaces weakened the inhibition of crystal growth and the phase transition of the Al2O3. The growth of TGO (Thermal growth oxide) and the diffusion into the 8YSZ coating produced deformation and stress in the ceramic coating. Tantalum appeared to absorb the oxygen that diffused into the coatings and delayed the growth of TGO in the interface between the CoCrAlYTaSi and substrate, which was beneficial to prolonging the life of the TBC.  相似文献   

14.
Yttria-stabilized zirconia (YSZ)-coatings are deposited on Ni-based superalloy IN738 by atmospheric plasma spraying (APS). For the first time, controlled segmentation crack densities are manually developed in the coatings, even after the APS deposition. This method allows to user to control segmentation densities as well as cracks depth, which could be designed as per coating thickness and required application. Thermal cycling test shows promising strain tolerance behavior for the segmented coatings, whereas coating without segmentation could not sustain even for its first thermal cycle period. Further, microstructural studies reveal that a very thin layer of TGO was formed and obvious no coating failure or spallation was observed after thermal cycling test at 1150 °C for 500 cycles.  相似文献   

15.
The low thickness of thermally grown oxide (TGO) layer and presence of amorphous phase in the as-sprayed LaMgAl11O19 (LaMA) coating reduce the thermal cycling lifetime of thermal barrier coatings (TBCs). In the present study, the as-sprayed Ni-22Cr-10Al-1.0Y bond coat was preoxidized at 1060?°C to produce a continuous oxide scale prior to subsequent deposition of the ceramic top coat. The optimum time of peroxidation treatment and thickness of the continuous aluminum oxide layer were estimated 15?h and 2?µm respectively. The oxidized layer due to the preoxidation treatment of bond coating reduces the amorphous phase in as-sprayed LaMA coating and increases the microhardness of LaMA coating from approximately 600 to 900HV. Also, preoxidation of the NiCrAlY bond coating increases adhesion strength of the LaMA top coating, even slightly more than the adhesion strength of the as-spray 8YSZ coating. The LaMA coatings have a lower hardness in compared with the 8YSZ coating (~ 1010Hv), which results a better elastic behavior.  相似文献   

16.
《Ceramics International》2016,42(14):15868-15875
In this research, the high temperature oxidation behavior, porosity, and microstructure of four abradable thermal barrier coatings (ATBCs) consisting of micro- and nanostructured YSZ, YSZ-10%LaPO4, and YSZ-20%LaPO4 coatings produced by atmospheric (APS) method were evaluated. Results show that the volume percentage of porosity in the coatings containing LaPO4 was higher than the monolithic YSZ sample. It was probably due to less thermal conductivity of LaPO4 phases. Furthermore, the results showed that the amount of the remaining porosity in the composite coatings was higher than the monolithic YSZ at 1000 °C for 120 h. After 120 h isothermal oxidation, the thickness of thermally growth oxide (TGO) layer in composite coatings was higher than that of YSZ coating due to higher porosity and sintering resistance of composite coatings. Finally, the isothermal oxidation resistance of conventional YSZ and nanostructured YSZ coating was investigated.  相似文献   

17.
《Ceramics International》2023,49(3):4795-4806
Thick thermal barrier coatings (TTBCs) have been developed to increase the lifetime of hot section parts in gas turbines by increasing the thermal insulating function. The premeditated forming of segmentation cracks was found to be a valuable way for such an aim without adding a new layer. The TTBC introduced in the current study are coatings with nominal thickness ranging from 1 to 1.1 consisting of MCrAlY bond coat and 8YSZ top coat deposited by air plasma spray technique (APS). TTBCs with segmented crack densities of 0.65 mm?1 (type-A) and 1 mm?1 (type-B) were deposited on a superalloy substrate by adjusting the coating conditions. It was found that the substrate temperature has an influential role in creating the segmentation crack density. The crack density was found to increase with substrate temperature and liquid splat temperature. The two types of coatings (type-A and B) with different densities of segmentation crack were heat-treated at 1000 °C (up to 100 h) and 1100 °C (up to 500 h). The variation of hardness measured by indentation testing indicates a similar trend in both types of coatings after heat treatments at 1000 °C and 1100 °C. Weibull analysis of results demonstrates that higher preheating coating during the deposition results in a denser YSZ coating. The growth rate of TGO for TTBCs was evaluated for cyclic and isothermal oxidation routes at 1000 °C and 1100 °C. The TGO shows the parabolic trend for both two types of coatings. The Kps value for two oxidation types is between 5.84 × 10?17 m2/s and 6.81 × 10?17 m2/s. Besides, the type B coating endures a lifetime of more than 40 cycles at thermal cycling at 1000 °C.  相似文献   

18.
We report a double-ceramic-layer (DCL) thermal barrier coating (TBC) with high-entropy rare-earth zirconate (HE-REZ) as the top layer and yttria stabilized zirconia (YSZ) as the inner layer sprayed on Ni-based superalloy by atmospheric plasma spraying. La2Zr2O7 (LZ) was selected as a reference for the HE-REZ. Thermal cycling test results demonstrate that the HE-REZ/YSZ DCL coating exhibited obviously improved thermal stability when compared to the LZ/YSZ DCL coating. The reasons for the improvement of the thermal shock resistance are considered to be the anti-sinterability of the HE-REZ ceramics during the thermal cycling test attributed to the sluggish diffusion effect and as well as the better match in the coefficient of thermal expansion of HE-REZ coating with the YSZ inner layer. In addition, the HE-REZ coating maintains fluorite structure after thermal cycling test. This study makes one step forward in the development and application of high-entropy rare-earth zirconate ceramic thermal barrier coatings.  相似文献   

19.
According to the experimental research results of the thermally grown oxide (TGO) layered growth during the pre-oxidation process of 8 wt.% yttria-stabilized zirconia thermal barrier coating (TBC), a two-dimensional sinusoidal TC/bonding coat (BC) curve interface model of the longitudinal section of TBCs based on finite element simulation was constructed; the thickness and composition of the TGO layer relative to the TC/BC curve interfacial stress distribution and its evolution during the thermal cycling process were studied. The results show that when the TGO layer uses α-Al2O3 as the main oxide (black TGO), the thicker the black TGO layer, the more uniform the stress distribution of the TC/BC interface. When the TGO layer is dominated by spinel-structured Co and Cr oxides (gray TGO), the stress “band” of the TC/BC interface is destroyed; it shows the alternating phenomenon of tensile stress zone and compressive stress zone, and after the rapid random growth of TGO, the concentrated tensile stress increased by a large jump. Affected by the thickness of the prefabricated black TGO layer, there is a limit peak in the thickness of the black TGO layer, the normal stress at the TC/BC boundary is minimized, and the magnitude of the stress change is also minimized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号