首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system’s components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity.  相似文献   

3.
The potential for both heat and power extraction from a PEM fuel cell is investigated experimentally and using computer simulation to improve the economics of a solar-hydrogen system supplying energy to a remote household. The overall average energy efficiency of the fuel cell was measured to be about 70% by utilizing the heat generated for domestic water heating, compared to only 35-50% for electricity generation alone. The corresponding round-trip energy efficiency of the hydrogen storage sub-system (electrolyzer, storage tank, and fuel cell) was raised from about 34% in a power-only application to about 50% in combined heat and power (CHP) mode. The economic benefit of using the fuel cell heat for boosting an LPG hot water system over a 30-year assessment period is estimated to be equivalent to about 15% of the total capital cost of the solar-hydrogen system. The stoichiometry of the input air, and the fuel cell operating temperature, were found to influence significantly the overall performance of the solar-hydrogen CHP system.  相似文献   

4.
Recently, the Solar-hydrogen energy system (SHES) becomes a reality thanks as well as a very common topic to energy research in Egypt as it is now being the key solution of different energy problems including global warming, poor air quality and dwindling reserves of liquid hydrocarbon fuels. Hydrogen is a flexible storage medium for energy and can be generated by the electrolysis of water. It is more particularly advantageous and efficient when the electrolyzer is simply coupled to a source of renewable electrical energy. This paper examines the operation of alkaline water electrolysis coupled with solar photovoltaic (PV) source for hydrogen generation with emphasis on the electrolyzer efficiency. PV generator is simulated using Matlab/Simulink to obtain its characteristics under different operating conditions with solar irradiance and temperature variations. The experimental alkaline water electrolysis system is built in the fluid mechanics laboratory of Menoufiya University and tested at certain input voltages and currents which are fed from the PV generator. The effects of voltage, solution concentration of electrolyte and the space between the pair of electrodes on the amount of hydrogen produced by water electrolysis as well as the electrolyzer efficiency are experimentally investigated. The water electrolysis of different potassium hydroxide aqueous solutions is conducted under atmospheric pressure using stainless steel electrodes. The experimental results showed that the performance of water electrolysis unit is highly affected by the voltage input and the gap between the electrodes. Higher rates of produced hydrogen can be obtained at smaller space between the electrodes and also at higher voltage input. The maximum electrolyzer efficiency is obtained at the smallest gap between electrodes, however, for a specified input voltage value within the range considered.  相似文献   

5.
Energy sector in Jordan faces serious challenges today. Jordan as a non-oil country depends by 96% on imported fuel to cover its demands. The present work seeks to improve an alternative fuel that can support the goals of National Energy Strategy in Jordan. Therefore; a mathematical model was developed to investigate the possibility of producing solar-hydrogen fuel in Jordan. Ma'an city was chosen to be the location of solar-hydrogen plant. The high solar insulation and the availability to supply the plant with water from Aqaba Gulf directly and/or from Red-Sea Dead-Sea Cannel make Ma'an the suitable location for the plant. A system with photovoltaic (PV) cell array and proton electron membrane (PEM) electrolyzer was suggested to be the connection system for the plant. Accordingly, two different scenarios were proposed for hydrogen production with different hydrogen production doubling time, the first scenario is θh1=2+0.15(n?1) year, while the second scenario is θh2=4+0.15(n?1) year. Eight different economic, social, and environmental parameters, which directly affect solar-hydrogen production, were evaluated and investigated for Jordan up to year 2060. Accordingly, the research study concluded that solar-hydrogen fuel can potentially offer a good option as an alternative fuel for Jordan. Starting the production at year of 2020 can provide a good sharing in energy demand sector by the end of the year 2060.  相似文献   

6.
The first solar-hydrogen (S-H) system in China, which consists a 2 kW PV cell array, a 48 V/300Ah lead-acid battery bank, an 0.5 Nm3/h hydrogen production capacity alkaline water electrolyzer, a 10 Nm3 LaNi5 alloy hydrogen storage tank and a 200 W H2/air PEM fuel cell, was installed in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University and has been operated for several months. The goal of the system was to study the technical and economical feasibility of using such a system to produce hydrogen in large scale for the future hydrogen energy society. With two months operation, experimental results reveal 40.68% energy transformed to hydrogen with 7.21 kWh/Nm3 H2 electricity consumption. Economic analysis results illustrate that the present system is not cost-efficient and the energy conversion efficiencies of PV panel and electrolyzer are suggested to increase in technology improvement to cut down cost.  相似文献   

7.
A numerical method was developed for optimising solar–hydrogen energy system to supply renewable energy for typical household connected with the grid. The considered case study involved household located in Diyala Governorate, Iraq. The solar–hydrogen energy system was designed to meet the desired electrical load and increase the renewable energy fraction using optimum fuel cell capacity. The simulation process was conducted by MATLAB based on the experimental data for electrical load, solar radiation and ambient temperature at a 1-min time-step resolution. Results demonstrated that the optimum fuel cell capacity was approximately 2.25 kW at 1.8 kW photovoltaic power system based on the average of the daily energy consumption of 6.8 kWh. The yearly renewable energy fraction increased from 31.82% to 95.82% due to the integration of the photovoltaic system with a 2.25 kW fuel cell used as a robust energy storage unit. In addition, the energy supply, which is the economic aspect for the optimum system, levelised electricity cost by approximately $0.195/kWh. The obtained results showed that the proposed numerical analysis methodology offers a distinctive property that can be used effectively to optimise hybrid renewable energy systems.  相似文献   

8.
A novel consequence-based approach was applied to the inherent safety assessment of the envisaged hydrogen production, distribution and utilization systems, in the perspective of the widespread hydrogen utilization as a vehicle fuel. Alternative scenarios were assessed for the hydrogen system chain from large scale production to final utilization. Hydrogen transportation and delivery was included in the analysis. The inherent safety fingerprint of each system was quantified by a set of Key Performance Indicators (KPIs). Rules for KPIs aggregation were considered for the overall assessment of the system chains. The final utilization stage resulted by large the more important for the overall expected safety performance of the system. Thus, comparison was carried out with technologies proposed for the use of other low emission fuels, as LPG and natural gas. The hazards of compressed hydrogen-fueled vehicles resulted comparable, while reference innovative hydrogen technologies evidenced a potentially higher safety performance. Thus, switching to the inherently safer technologies currently under development may play an important role in the safety enhancement of hydrogen vehicles, resulting in a relevant improvement of the overall safety performance of the entire hydrogen system.  相似文献   

9.
Solar thermal systems are an efficient utilization of solar energy for hot water and space heating at domestic level. A Solar Water Heater (SWH) incorporating an Evacuated Glass Tube Collector (EGTC) is simulated using TRNSYS software. Efficiency parameters are pointed, and a parametric optimization method is adopted to design the system with maximum conceivable efficiency. In the first part, the selection of refrigerant for heat transportation in SWH loop is presented. A set of 15 working fluids are chosen, and their chemical properties are computed using NIST standard software (REFPROP). The selected working fluids are tested in the system under study and plots for energy gain and temperature are plotted using TRNSYS. Results showed that ammonia (NH3) having specific heat 4.6kJ/kg-K and fluid thermal conductivity 2.12 kJ/hr-m supplies peak energy gain of 7500 kJ/h in winter and 8900 kJ/h in summer season along 120 °C temperature rise. On the other hand, R-123 having specific heat 0.65kJ/kg-K and fluid thermal conductivity 0.0293kJ/hr-m showed inferior performance during the simulation. A solar-hydrogen co-generation system is also designed and simulated under low solar insolation and warm climate regions to study annual hydrogen produced by the hybrid system. System comprises main components: a PV array, an electrolyzer, a fuel cell, a battery, a hydrogen storage unit and a controller in the complete loop. Results of Hydrogen cogeneration system provide 7.8% efficiency in the cold climate of Fargo North Dakota state due to lower solar insolation. While hot climate condition of Lahore weather provides efficiency of 11.8% which satisfy the statistics found in literature.  相似文献   

10.
The objective of the project is an all-year secure supply of alternating current based on a solar energy island grid consisting of serial components and seasonal energy storage. Photovoltaic modules, inverters, electrolysers, batteries, hydrogen stores and fuel cells form the basis of the independent power supply system. For this, selected load profiles were analysed and evaluated in theory and practice.The analysis is based on the results of the test runs of the system and the simulations, in which the combined hydrogen-battery-system is compared to the battery system.It was revealed that it is sensible to complement an island grid operating on lead batteries for shortterm energy supply with hydrogen as a long-term store. This ensures a year-round supply security based on solar energy and the extension of the life span of the batteries required for hydrogen-based power stores. The systems based purely on batteries can not provide perfect supply security during long periods of low solar radiation since they do not possess energy stores which allow long-term energy storage.Hence a seasonal energy store, such as hydrogen, is required to guarantee reliable power supply for every day of the year.Autonomous power supply systems with long-term energy stores operate independently from the public grid system and can be implemented without elaborate intelligent energy management. For this, however, the costs of the serial components must be reduced and the efficiency of the system must be improved.  相似文献   

11.
Nowadays, the development of the electric power system is associated with the penetration of power generation units based on renewable energy sources and operated with energy storage systems. However, the operation of such generation units changes and complicates the processes in the electric power system, which determines the need for a number of studies and analyses. This paper presents the results of assessing the impact of the operation of photovoltaic plants on the static stability of the electric power system. To achieve the goal, the EUROSTAG software was used. The results of studies of normal and post-emergency modes of electric power system with the different penetration level of generation units are presented, power system stability coefficients of active power and voltage are determined, damping properties of electric power system based on the calculation of the transient damping coefficient of the damping process are estimated.  相似文献   

12.
This study investigates the challenges and opportunities facing the installation of a hybrid hydrogen-renewable energy system in a remote island area disconnected from any main power grid. Islands with strong wind energy potential have the potential to become self-sufficient energy generating hubs that may even export electricity or hydrogen. This study has tested whether the combination of wind and hydrogen can replace a diesel generator on one of the Faroe Islands, Mykines. The comparison is based on an evaluation of each power system's costs, efficiency, environmental impact and suitability for the Mykines. The findings from this research can help inform those seeking to design 100% renewable energy systems for remote areas, and in particular islands. Furthermore, our comparison has value for those seeking to optimize the integration of wind turbines with hydrogen energy systems.  相似文献   

13.
Hydrogen-Photovoltaic (H2-PV) hybrid systems may represent a valid solution to foster the use of renewable sources to power off-grid Radio Base Stations (RBSs) for telecom applications. The use of Polymer Electrolyte Membrane (PEM) Fuel Cells (FCs) would in fact allow for having higher efficiency and lower consumption of primary fossil sources. Within that context, a demonstration project has been funded in the FCH-JU European project named “FCpoweredRBS: Demonstration Project for Power Supply to Telecom Stations through FC technology”, which was kicked-off in January 2012. Activities of that project are described in this paper, including system design, the definition of a 72 h benchmark and measurements of system performances under specifically developed benchmark cycles.  相似文献   

14.
A novel dimensionless approach to analysing the capability of a solar electricity supply system with seasonal hydrogen storage to supply a constant load throughout the year is presented. The only input required specific to the location is its solar ratio, defined as the minimum daily solar energy input during the year divided by the maximum. As well as yielding an estimate of the saving in installed primary solar electricity generating capacity, the approach gives an indicative evaluation of the economic viability of adding the hydrogen storage to a photovoltaic-based solar supply, either for a large-scale grid or small scale autonomous application. The model has been validated using the results obtained from the more comprehensive RSHAP simulation model (RMIT Solar-Hydrogen Analysis Program). The dimensionless model is applied to a selection of 78 cities with varying latitudes across all five continents. For a round-trip storage efficiency of around 45% and the base-case unit costs of components assumed, solar-hydrogen systems would be economic in 55% of these cities. At 50% storage efficiency and/or lowered unit costs, solar-hydrogen systems would become viable in the vast majority of the cities, excepting those near the equator where the net benefits of adding storage are lower because of the more constant solar radiation over the year.  相似文献   

15.
J.G. Carton  A.G. Olabi 《Energy》2010,35(12):4536-4544
Ireland with its resource of wind has the potential to use this natural resource and sustain the country’s power needs for the future. However, one of the biggest drawbacks to renewable energy generation, particularly wind-generated electricity is that it is an intermittent and a variable source of power. Even at the “best” sites wind varies dramatically from hour to hour and minute to minute. This leads to two main problems:  相似文献   

16.
The present work considers the impact of hydrogen fuel on the environment within the cycles of its generation and combustion. Hydrogen has been portrayed by the media as a fuel that is environmentally clean because its combustion results in the formation of harmless water. However, hydrogen first must be generated. The effect of hydrogen generation on the environment depends on the production process and the related by-products. Hydrogen available on the market at present is mainly generated by using steam reforming of natural gas, which is a fossil fuel. Its by-product is CO2, which is a greenhouse gas and its emission results in global warming and climate change. Therefore, hydrogen generated from fossil fuels is contributing to global warming to the similar extent as direct combustion of the fossil fuels. On the other hand hydrogen obtained from renewable energy, such solar energy, is environmentally clean during the cycles of its generation and combustion. Consequently, the introduction of hydrogen economy must be accompanied by the development of hydrogen that is environmentally friendly. The present work considers several aspects related to the generation and utilisation of hydrogen obtained by steam reforming and solar energy conversion (solar-hydrogen).  相似文献   

17.
The scope of this article is to show the initial results obtained in the interconnection of a 2.7 kW solar panel system with a solid polymer electrolyte (SPE) electrolyzer. The Non-Conventional Energies Department (ENC) at the Electrical Research Institute (IIE) considers that the storage of this intermittent energy by a chemical element such as hydrogen can be advantageous for certain applications. One of the arguments is that unlike traditional battery systems, hydrogen presents the great advantage of not discharging its energy content as long as it is not used.  相似文献   

18.
Nowadays, the climatic change has addressed the research targets to find renewable energy sources and in order to develop more efficient technologies in a simultaneous way, with the object of promoting a rational use of the energy in the frame of the sustainable development. In this case, an integrated process for sustainable electrical energy production from bioethanol was designed, taking advantage of hydrogen fuel as an energy carrier and fuel cells as efficient and clean devices. The calculated efficiency for this process is better than traditional power cycles, which constitutes a starting point for future developments of this technology.  相似文献   

19.
In recent years, hybrid photovoltaic–fuel cell energy systems have been popular as energy production systems for different applications. A typical solar-hydrogen system can be modeled the electricity supplied by PV panels is used to meet the demand directly to the maximum extent possible. If there is any surplus PV power over demand, and capacity left in the tank for accommodating additional hydrogen, this surplus power is supplied to the electrolyser to produce hydrogen for storage. When the output of the PV array is not sufficient to supply the demand, the fuel cell draws on hydrogen from storage and produces electricity to meet the supply deficit.  相似文献   

20.
This paper describes a photovoltaic power regulator aimed for photovoltaic stand-alone hydrogen-backup power systems. The main characteristics of the regulator are the following; it employs a modular approach where each power cell has three ports, one input and two outputs, the input port is connected to a photovoltaic source while the two output ports are connected to a battery and to an electrolyser, respectively. A second characteristic is that the proposed regulator is driven sequentially, minimising the regulator losses. The operation and features of the photovoltaic regulator are presented and analyzed. Design guidelines are suggested and experimental validation is also given for a 2 kW prototype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号