首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(24):34361-34379
This paper aimed to design and optimize the structure of a thick thermal barrier coating by adding graded layers to achieve a balance between high thermal insulation capacity and durability. To this end, conventional TBC, conventional TTBC, and functionally graded TTBCs were deposited on the superalloy substrate by air plasma spraying. To determine the quality of the bond strength of the coatings, the bonding strength was measured. The durability of coatings was evaluated by isothermal oxidation and thermal shock tests. Then, at a temperature of 1000 °C, the thermal insulation capacity of the coatings was carried out. The microstructure of the coatings was characterized by a scanning electron microscope. The results showed that the thickness of the TGO layer formed on the bond coat in the conventional TBC and TTBC under the oxidation test at 1000 °C after 150 h was 2.79 and 2.11 μm, respectively, whereas, in the functionally graded TTBC samples, no continuous TGO layer was observed as a result of internal oxidation. The functionally graded TTBC presented higher durability than conventional TTBC due to improved bonding strength, thermal shock resistance, and the lack of a TGO layer at the bond/top coat interface. Also, the thermal insulation capacity of the functionally graded TTBC (with 1000 μm thickness of YSZ coating) was better than TTBC.  相似文献   

2.
ZrO2 co-stabilized by CeO2 and TiO2 with stable, nontransformable tetragonal phase has attracted much attention as a potential material for thermal barrier coatings (TBCs) applied at temperatures >?1200?°C. In this study, ZrO2 co-stabilized by 15?mol% CeO2 and 5?mol% TiO2 (CTZ) and CTZ/YSZ (zirconia stabilized by 7.4?wt% Y2O3) double-ceramic-layer TBCs were respectively deposited by atmospheric plasma spraying. The microstructures, phase stability and thermo-physical properties of the CTZ coating were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric-differential scanning calorimeter (TG-DSC), laser pulses and dilatometry. Results showed that the CTZ coating with single tetragonal phase was more stable than the YSZ coating during isothermal heat-treatment at 1300?°C. The CTZ coating had a lower thermal conductivity than that of YSZ coating, decreasing from 0.89?W?m?1 K?1 to 0.76?W?m?1 K?1 with increasing temperature from room temperature to 1000?°C. The thermal expansion coefficients were in the range of 8.98?×?10?6 K?1 – 9.88 ×10?6 K?1. Samples were also thermally cycled at 1000?°C and 1100?°C. Failure of the TBCs was mainly a result of the thermal expansion mismatch between CTZ coating and superallloy substrate, the severe coating sintering and the reduction-oxidation of cerium oxide. The thermal durability of the TBCs at 1000?°C can be effectively enhanced by using a YSZ buffer layer, while the thermal cycling life of CTZ/YSZ double-ceramic-layer TBCs at 1100?°C was still unsatisfying. The thermal shock resistance of the CTZ coating should be improved; otherwise the promising properties of CTZ could not be transferred to a well-functioning coating.  相似文献   

3.
Yttria-stabilized zirconia (YSZ)-coatings are deposited on Ni-based superalloy IN738 by atmospheric plasma spraying (APS). For the first time, controlled segmentation crack densities are manually developed in the coatings, even after the APS deposition. This method allows to user to control segmentation densities as well as cracks depth, which could be designed as per coating thickness and required application. Thermal cycling test shows promising strain tolerance behavior for the segmented coatings, whereas coating without segmentation could not sustain even for its first thermal cycle period. Further, microstructural studies reveal that a very thin layer of TGO was formed and obvious no coating failure or spallation was observed after thermal cycling test at 1150 °C for 500 cycles.  相似文献   

4.
Thermal conductivity is a crucial parameter for evaluating the quality and thermal effects of ceramic coatings, especially for thermal barrier coatings. However, measurement by conventional method involves two problems: (a) it is difficult to peel off a ceramic coating from a substrate; (b) even if the coating can be peeled off, it is still hardly used as standard specimen in test. Therefore, the relative method was proposed to evaluate the thermal conductivity of ceramic coating. An analytical relationship among the thermal conductivities of the coating, the substrate, and the coating/substrate composite was established. Experiments on TA4 coated with YSZ coatings were carried out to demonstrate the feasibility of this novel method and to investigate the impact of temperature on the thermal conductivity of YSZ coatings. The experimental results demonstrated the validity and convenience of the relative method. With the increasing testing temperature, the thermal conductivity value of YSZ coatings displayed nonlinearity feature, that is, decreased from 1.4 to 1.3 (W m−1 K−1) in the temperature range of 32-300°C and then increased up to 1.58 W m−1 K−1 at 1000°C.  相似文献   

5.
《Ceramics International》2023,49(6):8962-8975
The porous ceramic coating as a "brick" layer sprayed by air plasma spraying(APS) and MK resin as a "mud" layer prepared by a high viscosity spray gun were characterized and tested. Three specifications of the "brick-mud" layered ceramic sealing coating were fabricated through the cyclic and orderly deposition of the "brick" layer and "mud" layer, and the thermal cycling performance and failure mechanism of the three new coatings were studied. The results showed that the agglomerated Y2O3 partially stabilized ZrO2 (YSZ) particles had porous spherical structures and good sprayability, and the content of the YSZ phase in the prepared "brick" layer was 54.2%. The "mud" layer had good phase stability and was amorphous SiO2 at and below 1100 °C. The fracture toughness of the pure YSZ coating was 2.295 ± 0.135 MPa?m0.5, and which of the “mud” layer was reduced by 72.3%. The thermal cycling life of the conventional coating was only 67.3 times, which of A1, A2 and A3 coatings with 2, 3 and 6 "mud" layers were increased by 32.4%, 124.8% and 88.3%, respectively. In the thermal cycling process, the "weak" layer in the "brick-mud" layered coating led to the redistribution of internal stress and reduced the stress concentration in the top coating (TC)/TGO interface. Moreover, the initiation of microcracks in the "weak" layer, along with the "crack branching" effect and the "crack deflection" effect during the crack propagation process, could consume partial internal stress. Thus, the crack growth rates in the TC coating/TGO interface of the A1, A2 and A3coatings were lower than that of the conventional coating due to the above stress release mechanisms. In addition, the thermal cycling lives of the three new coatings with 2, 3 and 6 "mud" layers were improved to different degrees because of different stress effects.  相似文献   

6.
Nanostructured 13 wt%Al2O3 doped nanostructured 8 wt% yttria stabilized zirconia (nano-13AlYSZ) coatings were deposited by atmospheric plasma spray (APS). The isothermal oxidation and thermal cyclic life of the nano-13AlYSZ coating at 1100 °C were investigated. The isothermal oxidation test results indicate that the oxidation kinetics of nano-13AlYSZ follows a parabolic law. The parabolic rate constant at 1100 °C is calculated 0.04365 mg2 cm?4 h?1. The thermal cyclic life of nano-13AlYSZ coating is about 953 times at 1100 °C. The failure of the nano-13AlYSZ coating occurs at the interface between the nano-13AlYSZ coating and the thermal growth oxide (TGO). A finite element method is employed to analyze the stress distribution in the nano-13AlYSZ coating. The results show that maximum stresses occur at the top coat/TGO interface.  相似文献   

7.
The PS-PVD method was used to prepare 7YSZ thermal barrier coatings (TBCs) and NiCrAlY bond coatings on a DZ40 M substrate. To prevent oxidation of the coating, magnetron sputtering was used to modify the surface of TBCs with an Al film. To explore the stability of TBCs during thermal cycling, water quenching was performed at 1100 °C, and ultralong air cooling for 16,000 cycles was performed. The results showed that before water quenching and air cooling, the top surface structure of the 7YSZ TBCs changed. After water quenching, the surface of the Al film was scoured and broken, the surface peeled off layer-by-layer, and cracks formed at the interface between the thermally grown oxide and NiCrAlY. During air cooling of the thermal cycle, the Al film reacted with O2 in the air to form a dense Al2O3 top layer that coated the cauliflower-like 7YSZ surface and maintained the feather-like shape. At the same time, the TGO layer between 7YSZ and NiCrAlY grew and cracked. The two thermal cycles of water quenching and air cooling led to different failure mechanisms of TBCs. Water quenching failure was caused by layer-by-layer failure of the 7YSZ top coat, while air cooling failure occurred due to the internal cracking of the TGO layer at the 7YSZ/NiCrAlY interface and the failure of the TGO/NiCrAlY interface.  相似文献   

8.
《Ceramics International》2016,42(14):15868-15875
In this research, the high temperature oxidation behavior, porosity, and microstructure of four abradable thermal barrier coatings (ATBCs) consisting of micro- and nanostructured YSZ, YSZ-10%LaPO4, and YSZ-20%LaPO4 coatings produced by atmospheric (APS) method were evaluated. Results show that the volume percentage of porosity in the coatings containing LaPO4 was higher than the monolithic YSZ sample. It was probably due to less thermal conductivity of LaPO4 phases. Furthermore, the results showed that the amount of the remaining porosity in the composite coatings was higher than the monolithic YSZ at 1000 °C for 120 h. After 120 h isothermal oxidation, the thickness of thermally growth oxide (TGO) layer in composite coatings was higher than that of YSZ coating due to higher porosity and sintering resistance of composite coatings. Finally, the isothermal oxidation resistance of conventional YSZ and nanostructured YSZ coating was investigated.  相似文献   

9.
《Ceramics International》2020,46(6):7489-7498
The thermal shock behavior of a thermal barrier coating (TBC) prepared by plasma spraying at 1100 °C was investigated. The TBC consisted of a double layer structure of 8YSZ/CoCrAlYTaSi. The morphology, microstructure, phases and the elemental distribution of the TBCs were characterized using scanning electron microscopy (SEM), transmission electron microscope (TEM), scanning transmission electron microscope (STEM), X-ray diffraction (XRD) and electron probe micro-analysis (EPMA). The characterization results showed that the film consisted primarily of metastable tetragonal phases (t′), and a large number of micro-cracks were present in the 8YSZ crystals. Following eighty-six thermal shock cycles of the specimens a large areal spallation was observed on the 8YSZ coating. The decreased concentration of yttrium at the coating interfaces weakened the inhibition of crystal growth and the phase transition of the Al2O3. The growth of TGO (Thermal growth oxide) and the diffusion into the 8YSZ coating produced deformation and stress in the ceramic coating. Tantalum appeared to absorb the oxygen that diffused into the coatings and delayed the growth of TGO in the interface between the CoCrAlYTaSi and substrate, which was beneficial to prolonging the life of the TBC.  相似文献   

10.
About 6-8 wt% yttria-stabilized zirconia (YSZ) is the industry standard material for thermal barrier coatings (TBC). However, it cannot meet the long-term requirements for advanced engines due to the phase transformation and sintering issues above 1200°C. In this study, we have developed a magnetoplumbite-type SrAl12O19 coating fabricated by atmospheric plasma spray, which shows potential capability to be operated above 1200°C. SrAl12O19 coating exhibits large concentrations of cracks and pores (~26% porosity) after 1000 hours heat treatment at 1300°C, while the total porosity of YSZ coatings progressively decreases from the initial value of ~18% to ~5%. Due to the contribution of porous microstructure, an ultralow thermal conductivity (~1.36 W m−1 K−1) can be maintained for SrAl12O19 coating even after 1000 hours aging at 1300°C, which is far lower than that of the YSZ coating (~1.98 W m−1 K−1). In thermal cyclic fatigue test, the SrAl12O19/YSZ double-ceramic-layer coating undertakes a thermal cycling lifetime of ~512 cycles, which is not only much longer than its single-layer counterpart (~163 cycles), but also superior to that of YSZ coating (~392 cycles). These preliminary results suggest that SrAl12O19 might be a promising alternative TBC material to YSZ for applications above 1200°C.  相似文献   

11.
This work concerns the study of damage evolution in a newly developed high purity nano 8YSZ thermal barrier coating during thermal cyclic fatigue tests (TCF). TCF tests were conducted between 100 °C–1100 °C with a hold time of 1 h at 1100 °C, first till failure and later for interrupted tests. Cross section analysis along the diameter of the interrupted test samples revealed a mixed-type failure and that the most of the damage occurred towards the end of the coating’s life. To understand the most likely crack growth mechanism leading to failure, different crack growth paths have been modelled using finite element analysis. Crack growing from an existing defect in the top coat towards the top coat/TGO interface has been identified as the most likely mechanism. Estimated damage by the model could predict the rapid increase in the damage towards the end of the coating’s life.  相似文献   

12.
《Ceramics International》2020,46(14):22438-22451
In this paper, two coating techniques, the high velocity oxy-fuel (HVOF) and air plasma spray (APS) techniques, were used to deposit a bond coat of NiCoCrAlYTa on the Inconel 625 substrate, followed by applying a topcoat of yttria-stabilized zirconia (YSZ). The samples were preoxidized in an argon-controlled furnace at a temperature of 1000 °C for 12 and 24 h to characterize the microstructure of a thermally grown oxide (TGO) using the two coating techniques. The most suitable preoxidized samples were further tested for isothermal oxidation at 1000 °C for up to 120 h, and a hot corrosion test was performed at 1000 °C for up to 52 h or until spalling occurred. As-sprayed and oxidized samples prepared with different coating techniques were evaluated in terms of their microstructure using different characterization methods, such as field emission scanning electron microscopy (FESEM), variable pressure scanning electron microscopy (VPSEM), energy dispersive X-ray spectroscopy (EDS) equipped with energy dispersive X-ray and X-ray diffraction (XRD) analyses. In addition, the mechanical properties of these samples were evaluated using adhesion tests. The results show that the YSZ/NiCoCrAlYTa coating applied with the HVOF technique forms a more thin and continuous layer of TGO than that obtained when applying a YSZ/NiCoCrAlYTa coating using the APS technique, indicating that a severe brittle oxidation interface exists between the two layers. The results also indicate that the mechanical strength obtained from the adhesion test of the coated samples is observably affected by the oxidation behaviors obtained with the different deposition techniques chosen.  相似文献   

13.
《Ceramics International》2020,46(10):16372-16379
To improve the crack propagation resistance of YSZ thermal barrier coatings during the thermal cycle, three kinds of thermal barrier coatings were prepared by atmospheric plasma spraying: YSZ, AlBOw-modified YSZ and BNW-modified YSZ. SEM, EDS and XRD were used to analyse the morphology, composition and phase composition of the sprayed powder and coating section. The phase structures of the YSZ, YSZ+AlBOw and YSZ+BNw coatings were t' phase. The cross-section of the coating presents a layered structure with pores inside. The porosity values of the YSZ, YSZ+AlBOw and YSZ+BNw coatings are 10.33%, 14.17% and 12.52%, respectively. The thermal shock resistance of three groups of coatings after 5 min at 1000 °C was analysed. The failure behaviour of the coatings after several thermal cycles was studied. The results show that the thermal shock resistance of the coatings with AlBOw is slightly lower than that of the YSZ coatings. The thermal shock resistance of the BNw coatings is 62.2% higher than that of the YSZ coatings. The whisker inhibits the crack propagation and prolongs the life of the coatings via crack deflection, whisker pull-out and whisker bridging.  相似文献   

14.
《Ceramics International》2020,46(11):18698-18706
Three different kinds of thermal barrier coatings (TBCs) — 8YSZ, 38YSZ and a dual-layered (DL) TBCs with pure Y2O3 on the top of 8YSZ were produced on nickel-based superalloy substrate by air plasma spraying (APS). The Calcium–Magnesium–Aluminum-Silicate (CMAS) corrosion resistance of these three kinds of coatings were researched via burner rig test at 1350 °C for different durations. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD. With the increase of Y content, TBCs exhibit better performance against CMAS corrosion. The corrosion resistance against CMAS of different TBCs in descending was 8YSZ + Y2O3, 38YSZ and 8YSZ, respectively. YSZ diffused from TBCs into the CMAS, and formed Y-lean ZrO2 in TBCs because of the higher diffusion rate and solubility of Y3+ in CMAS than Zr4+. At the same time, 38YSZ/8YSZ + Y2O3 reacts with CAMS to form Ca4Y6(SiO4)6O/Y4·67(SiO4)3O with dense structure, which can prevent further infiltration of CMAS. The failure of 8YSZ coatings occurred at the interface between the ceramic coating and the thermally grown oxide scale (TGO)/bond coating. During the burner rig test, the Y2O3 layer of the DL TBCs peeled off progressively and the 8YSZ layer exposed gradually. DL coatings keep roughly intact and did not meet the failure criteria after 3 h test. 38YSZ coating was partially ablated, the overall thickness of the coating is thinned simultaneously after 2 h. Therefore, 8YSZ + Y2O3 dual-layered coating is expected to be a CMAS corrosion-resistant TBC with practical properties.  相似文献   

15.
《Ceramics International》2022,48(24):36450-36459
In the present work, YSZ TBCs and 10 wt% CeO2-doped YSZ thermal barrier coatings (CeYSZ TBCs) were prepared via atmospheric plasma spraying(APS) respectively, whereupon high temperature oxidation experiment was carried out at 1100 °C to compare the high temperature oxidation behavior and mechanism of the two TBCs. The results showed that the doping of CeO2 reduced the porosity of YSZ TBCs by 23%, resulting in smaller oxidation weight gain and lower TGO growth rates for CeYSZ TBCs. Besides, the TGO generated in CeYSZ TBCs was obviously thinner and there were fewer defects inside it. For YSZ TBCs, as the oxidation process proceeded, Al, Cr, Co and Ni elements in the bonding coating were oxidized successively to form loose and porous spinel type oxides (CS), which was apt to cause the spalling failure of TBCs. While, the Al2O3 layer of the TGO generated in CeYSZ TBCs ruptured later than that in YSZ TBCs, which delayed the oxidation of Cr, Co, and Ni elements and the formation of CS accordingly. Therefore, CeO2 doping can effectively improve the high temperature oxidation resistance of YSZ TBCs.  相似文献   

16.
《Ceramics International》2016,42(10):12172-12179
Two kinds of segmentation-crack structured YSZ thick thermal barrier coatings (TTBCs) were deposited by suspension plasma spraying (SPS) and atmospheric plasma spraying (APS) with nano-based suspension and agglomerated particles, respectively. The phase composition, microstructure evolution and failure behavior of both TBCs before and after thermal shock tests were systematically investigated. Microstructure of the APS coating exhibits typical segmentation-crack structure in the through-thickness direction, similar with the SPS coating. The densities of segmentation-crack in APS and SPS coatings were about 3 cracks mm−1 and 4 cracks mm−1, respectively. The microstructure observation also showed that the columnar and equiaxed grains existed in the SPS coating. As for the thermal shock test, the spallation life of the APS TTBCs was 146 cycles, close to that of the SPS TTBCs (166 cycles). Failure of the APS coating is due to the spallation of fringe segments and splats.  相似文献   

17.
《Ceramics International》2022,48(14):20201-20210
HfO2 doped Si is designed as bond coat material in thermal/environmental barrier coatings (TEBCs). In this work, the HfO2-Si composite coatings with different HfO2 contents were prepared by atmospheric plasma spraying (APS). The steam oxidation behavior of the coatings was comparatively studied at 1300 °C and 1400 °C. Volatilization of Si occurred during spraying, leading to the deviation of coating compositions. The sprayed coatings contained different HfO2 structures. During steam oxidation, HfSiO4 phase was formed at the SiO2/HfO2 interface by solid-state reaction between them. The HfSiO4 or HfO2/HfSiO4 mixture particles worked to deflect or pin micro-cracks, thus improving the resistance of the coating to cracking. At 1300 °C, a protective oxide scale was formed on the traditional Si coating or the HfO2-Si coating with isolated HfO2 particles. However, the HfO2-Si coating with inter-connected HfO2 framework revealed poor oxidation-resistance. At 1400 °C, accelerated oxidation degradation, steam corrosion volatilization, interface reaction and sintering occurred. The HfO2 framework structure played a dominating role in determining the steam oxidation resistance of the HfO2-Si coating, and the connected HfO2 framework and TGO network provided a rapid diffusion path for oxidants (H2O, O2? and OH?) and deteriorated the oxidation resistance.  相似文献   

18.
《Ceramics International》2022,48(13):18257-18269
Thermal barrier coatings (TBCs) are essential to improve the thermal insulation performance of high-temperature components. Rare earth element (Eu3+) doped yttrium stabilized zirconia (YSZ) TBCs have been proved to be an ideal solution for non-destructive testing of internal damages. Based on this theory, two types of coatings deposited by air plasma spray (APS) on Hastelloy-X were investigated: (1) Eu3+ doped YSZ (dopant ratios 1 mol%, 2 mol%, 4 mol%, respectively), (2) traditional undoped 8YSZ. Isothermal oxidation treatment at 1100 °C, in increments of 10h until the failure of the coatings are conducted to evaluate the mechanical properties of different coatings. The microscopic morphology and phase of the coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD) patterns, respectively. The indentation testing methods were used to study the apparent interfacial fracture toughness and the hardness of the ceramic top coat. Results show that the Vickers hardness of the top coat increases with the decrease of porosity in the early stage and then decreases with the heat treatment time increasing in the long-term stage. Simultaneously, compared with the undoped 8YSZ coating, the fracture toughness increased with the dopant of Eu3+ ions increasing, from 1 mol% to 2 mol%, nevertheless, that of 4 mol% Eu3+ doped YSZ decreased compared with in the undoped 8 YSZ. For all types of specimens, the interfacial fracture toughness decreases with the increase of isothermal oxidation time. Results also indicate that the content of Eu3+ doping does not affect the microstructure and interfacial morphology of the YSZ coating as well as the growth law of thermally grown oxides (TGO). Furthermore, EDS detection found that the Eu3+ ions almost do not diffuse inside the TBCs system after isothermal oxidation treatment.  相似文献   

19.
《Ceramics International》2022,48(9):12423-12429
The superposed structure of double ceramic layer (SDCL) could be an effective means to develop long-life thermal barrier coating (TBC) at high temperatures. In this study, YSZ/LaMgAl11O19 TBC system with double-ceramic layer (DCL) and SDCL structures were prepared on nickel-based superalloy substrates by atmospheric plasma spraying. The thermal cycling behavior of the coatings was investigated using a furnace at 1000 °C and burner-rig facility at 1375 ± 25 °C on the coating surface. Results showed that the thermal cycle life of the SDCL structure was increased by 7.2% for the furnace and 13.2% for the burner-rig facility compared with that of the DCL structure. The relatively long thermal cycle life of the SDCL structure was attributed to the blocking of the propagation of cracks in the LMA layers by the YSZ ceramic layer and the release of residual thermal stresses by the formation of cracks in the LMA layers.  相似文献   

20.
Yttria stabilized zirconia/alumina (YSZ/Al2O3) composite coatings were prepared from electrophoretic deposition (EPD), followed by sintering. The constrained sintering of the coatings on metal substrates was characterized with microstructure examination using electron microscopy, mechanical properties examination using nanoindentation, and residual stress measurement using Cr3+ fluorescence spectroscopy. The microstructure close to the coating/substrate interface is more porous than that near the surface of the EPD coatings due to the deposition process and the constrained sintering of the coatings. The sintering of the YSZ/Al2O3 composite coating took up to 200 h at 1250 °C to achieve the highest density due to the constraint of the substrate. When the coating was sintered at 1000 °C after sintering at 1250 °C for less than 100 h, the compressive stress was generated due to thermal mismatch between the coating and metal substrate, leading to further densification at 1000 °C because of the ‘hot pressing’ effect. The relative densities estimated based on the residual stress measurements are close to the densities measured by the Archimedes method, which excludes an open porosity effect. The densities estimated from the hardness and the modulus measurements are lower than those from the residual stress measurement and the Archimedes method, because it takes account of the open porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号