首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2019,45(12):14608-14613
We investigated the bioactivity and cytocompatibility of 45S5 bioactive glass (BG) based scaffolds coated with a composite layer formed by gelatin and manganese doped mesoporous bioactive glass nanoparticles (Mn-MBGNs). The scaffolds were prepared using the foam replica method, and they were further coated with Mn-MBGNs/gelatin via dip coating. The synthesized scaffolds were characterized in relation to morphology, porosity, mechanical stability, bioactivity and cell biology behavior using osteoblast-like (MG-63) cells. The scaffolds were highly porous with interconnected porosity, and a suitable pore structure was maintained even after the Mn-MBGNs/gelatin coating. Energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of Mn-MBGNs in the coatings. Moreover, the presence of gelatin was confirmed by Fourier transform infrared spectroscopy (FTIR). The coated scaffolds exhibited in-vitro bioactivity in simulated body fluid comparable to that of uncoated BG scaffolds. Finally, Mn-MBGNs/gelatin coated scaffolds were shown to be non-cytotoxic to MG-63 cells. Hence, the results presented here confirm that the novel Mn containing scaffolds can be considered in the field of biologically active ion releasing scaffolds for bone tissue engineering applications.  相似文献   

2.
《Ceramics International》2023,49(1):538-547
The poor mechanical properties of 3D printed HA bone scaffold is always a challenge in tissue engineering, to address this issue, carboxymethyl chitosan (CMCS) was proposed to modify HA bone scaffolds by a physical blending method in this research. A series of HA and HA/CMCS composite ceramic scaffolds were printed by using piezoelectric inkjet 3D printing technology, and their properties were investigated in terms of forming quality, structural morphology, mechanical properties, degradability, cytotoxicity, and cell adhesion growth. The results of forming quality and structural morphology show that with the increase of CMCS content, the forming quality of the samples deteriorated, the pore size and porosity increased. However, when the content of CMCS reached 5 wt%, obvious cracks appeared on the surface of the sample, and the forming quality was relatively poor. The mechanical testing results indicated the toughness of composites could be enhanced by incorporating CMCS into HA, which was attributed to the higher strength connections of the CMCS polymer network between HA particles and the stronger interaction between HA and CMCS molecules. FTIR spectra further revealed the strong hydrogen bonding interaction between CMCS and HA. Moreover, the degradation rate and mineralization ability of the sample increased with the content of CMCS, but the compressive strength during degradation increased with the CMCS content, indicating that incorporating CMCS into HA cannot only improve the mechanical property and biological activity of the scaffold but also makes up the defect of slow degradation of pure HA scaffold. Finally, the cytotoxicity, cell adhesion, and cell proliferation tests show that HA and HA/CMCS composite samples had good cytocompatibility, HA/CMCS sample with 3 wt% CMCS possessed the best bioactivity. In summary, HA/CMCS composite powder with 3 wt% CMCS content is the optimal matrix material for 3D printing bone scaffolds.  相似文献   

3.
In vitro degradation behaviors of composite materials composed of poly-l-lactide (PLLA) and bioactive glass (BG) were systematically investigated up to 20 weeks in phosphate-buffered solution (PBS) at 37 °C. The properties of PLLA/BG composites and PLLA materials, including weight loss, bending strength and modulus, shearing strength, polymer molecular weight and its distribution, and the morphologies, were investigated as a function of degradation time. The change of the pH value of the PBS media was also detected. The results showed that the presence of the bioactive glass modified the degradation of the matrix polymer. The degradation rate of the PLLA/BG composites was slower than the degradation rate of the sole PLLA materials.  相似文献   

4.
《Ceramics International》2016,42(14):15442-15448
This work evaluates for the first time the cyto-compatibility of silicone (polysiloxane)/bioactive glass composite films produced by dip coating on stainless steel substrates using osteoblast-like (MG-63) cells. With the aim of creating corrosion resistant coatings for biomedical applications, bioactive glass (BG) of 45S5 composition was used as a filler in conjunction with commercial silicones (MK and H62C). Bioactive glass has the property of forming a direct bond to living bone, and polysiloxane is an attractive candidate for protective coatings due to its resistance to oxidation and corrosion. Suspensions based on polysiloxanes (MK/H62C) and micro-sized BG fillers were used for dip coating stainless steel substrates at room temperature, followed by curing in oxidative atmosphere at 260 °C and 500 °C. Fourier transform infrared spectroscopy (FTIR) analysis revealed the presence of Si–O–Si, Si–OR, Si–CH3 and Si–OH groups on the substrate. Field emission scanning electron microscopy showed that the coatings were homogeneous with no obvious cracks or pinholes at relatively high concentrations of both polysiloxane and BG. The cell biology experiments confirmed that the expressed cell-morphology, analyzed on chosen surfaces, was pheno-typical for MG-63 cells after 48 h of incubation. On the film containing the lower amount of polysiloxane/BG the most dense cell layer was formed. Our results indicated that polysiloxane/BG composite films exhibited good cyto-compatibility at 260 °C and 500 °C and showed no toxicity toward MG-63 cells suggesting the potential of this composite for applications in medical implants.  相似文献   

5.
Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics with outstanding mechanical properties and aesthetic origins are expected to be used in dental implant applications. However, tetragonal zirconia ceramics are not bioactive, which affect the osseointegration and reliability as dental implant materials. Herein, in this study, Y-TZP ceramics were modified by grain-boundary activation via coating a bioactive glass (BG) sol with different content on the crystal surfaces of zirconia powder and followed by being gelled, dried, granulated, low-temperature treated, molded and sintered at 1450°C for 3 h in air. The effects of BG content on the morphology, phase compositions, mechanical properties, in vitro mineralization ability and cell biological properties of the bioactivity modified Y-TZP ceramics were evaluated. The BG additive did not affect the tetragonal–monoclinic phase transformation of ZrO2. However, the addition of BG decreased the flexural strength of the modified Y-TZP ceramics compared to that of Y-TZP. The in vitro mineralization results showed that a homogeneous apatite layer was produced on the surface of the Y-TZP ceramics when they were immersed in the simulated body fluid for 21 days. The cell response results indicated that the bioactive surface modification of Y-TZP ceramics could promote cell adhesion, propagation and osteogenic differentiation performance. Thus, our research results suggest that the highly bioactive Y-TZP ceramics could be a potential candidate for dental implant material.  相似文献   

6.
Desired bone repair biomaterial must have good biocompatibility and suitable mechanical properties that are equivalent to those of human bones. In this study, multi-walled carbon nanotubes (MWCNTS) was designed to incorporate into bioactive glass/poly(etheretherketone) to fabricate a composite of multi-walled carbon nanotubes/bioactive glass/poly(etheretherketone) (MWCNTS/BG/PEEK) through a compounding and injection-molding process. The microstructures, mechanical properties, thermal stability and bioactivity of the ternary biocomposite, as well as preliminary cell responses of MC3T3-E1 osteoblast cells to this biomaterial, were investigated. The mechanical performance of ternary MWCNTS/BG/PEEK composite was vastly superior to binary BG/PEEK composite. More importantly, cell culture tests showed that cell adhesion, viability and differentiation of MC3T3-E1 cells were significantly promoted on the MWCNTS/BG/PEEK composite. Moreover, it was found that MWCNTS in composite further promoted cell metabolic vitality and osteogenic differentiation of osteoblast cells. Hence, this MWCNTS/BG/PEEK biomaterial may be used as a promising bone graft scaffold in dental and orthopedic applications.  相似文献   

7.
The successful fabrication of hydroxyapatite‐bioactive glass scaffolds using honeycomb extrusion is presented herein. Hydroxyapatite was combined with either 10 wt% stoichiometric Bioglass® (BG1), calcium‐excess Bioglass® (BG2) or canasite (CAN). For all composite materials, glass‐induced partial phase transformation of the HA into the mechanically weaker β‐tricalcium phosphate (TCP) occurred but XRD data demonstrated that BG2 exhibited a lower volume fraction of TCP than BG1. Consequently, the maximum compressive strength observed for BG1 and BG2 were 30.3 ± 3.9 and 56.7 ± 6.9 MPa, respectively, for specimens sintered at 1300°C. CAN scaffolds, in contrast, collapsed when handled when sintered below 1300°C, and thus failed. The microstructure illustrated a morphology similar to that of BG1 sintered at 1200°C, and hence a comparable compressive strength (11.4 ± 3.1 MPa). The results highlight the great potential offered by honeycomb extrusion for fabricating high‐strength porous scaffolds. The compressive strengths exceed that of commercial scaffolds, and biological tests revealed an increase in cell viability over 7 days for all hybrid scaffolds. Thus it is expected that the incorporation of 10 wt% bioactive glass will provide the added advantage of enhanced bioactivity in concert with improved mechanical stability.  相似文献   

8.
In this study, macroporous bioactive nanocomposite scaffolds were developed using cross-linked gelatin and bioactive glass (BaG) nanoparticles. First, BaG nanoparticles were synthesized via sol–gel method and characterized. Then, macroporous nanocomposites were prepared through layer solvent casting combined with freeze-drying and lamination techniques. This research has developed a new composition to produce a new bioactive nanocomposite which is porous with three-dimensional (3D) inter-connected microstructure, pore sizes are 200–500 μm, porosity are 72–86% and BaG nanoparticles are dispersed evenly among cross-linked gelatin matrices. It is mentionable that in this study, we have reported the formation of chemical bonds between BaG nanoparticles and gelatin for the first time. Finally, the in vitro cytocompatibility of the nanocomposite scaffolds was tested using SaOS-2 cell line.  相似文献   

9.
Biodegradable and biocompatible materials are the basis for medical application. As an initial step for developing bone internal fixation materials, the biological evaluation of poly-l-lactic acid/bioactive glass (PLLA/BG) composite in vitro and in vivo, including the hemolysis test, pyrogen test, acute systemic toxicity test, genetic toxicity test, anaphylaxis test, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, direct cell culture and in vivo implant experiment, was performed. The results indicated that PLLA/BG composite showed no acute systemic toxicity, genetic toxicity, anaphylaxis reaction, and pyrogen reaction, and the hemolysis ratio was 0.39%. MTT assay indicated that no cytotoxic effect was observed for the PLLA/BG composite, and in addition, a significant increase in cellular activity compared to the negative control group was found. Excellent adhesion between fibroblast and PLLA/BG material was observed, the fibroblasts cultured on the PLLA/BG composite substrates revealed a higher proliferation and differentiation rate than those on the pure PLLA substrates. In vivo implant experiment showed that the PLLA/BG composite could maintain the mechanical properties during the course of fracture therapy, and the malleolar fracture of rabbits was healed in 8 weeks on the whole. Therefore, PLLA/BG composites have a promising biological response as a potential implant material.  相似文献   

10.
The cytocompatibility and hydrophilicity tests were performed by culturing mouse fibroblastic cells on films of poly-L-lactic acid (PLLA), poly(L-lactic-co-glycolide) (PLGA) and poly(L-lactide-co-glycolide)/ bioactive glass (PLGA/BG) or in the presence of extracts from these polymeric materials. The solvent casting method was used to prepare these films. PLLA films were most hydrophobic and PLGA/BG was least hydrophobic. Compared to the other films, PLLA showed the worst results in cytocompatibility. PLGA also showed favorable results for fibroblastic cells viability. PLGA/BG films also demonstrated improved cell compatibility due to the good biocompatibility of the bioactive glass particles. The results of this study indicate the promising biocompatibility of PLGA/BG as biomaterials in medical field.  相似文献   

11.
Bioceramic foams have been applied for drug releasing agents, cell loading, and widely for hard tissue scaffold. The aim of this study was fabrication and characterization of nanostructure bioceramic composite foam (BCF) consisting of hydroxyapatite (HA) and bioactive glass (BG) via gelcasting method for applications in tissue engineering. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis techniques were utilized in order to evaluate respectively, phase composition, dimension, morphology, and interconnectivity of pores, and particle size of synthesized HA, BG, and BCF. The results showed that fabrication of the BCF with a particle size in the range 20-42 nm and pore size in the range 100-250 μm was successfully performed. The maximum values of compressive strength and elastic modulus of the BCF were found to be about 1.95 MPa and 204 MPa, respectively, related to a sample sintered at 900 °C for 4 h. The mean values of the true (total) and apparent (interconnected) porosity were calculated in the range 86-91% and 60-71%, respectively. It seems that the measured properties make the BCF a good candidate for tissue engineering applications, preferentially in drug delivery, cell loading, and other nonloading applications.  相似文献   

12.
A fibrous scaffold is required to provide three‐dimensional (3D) cell growth microenvironments and appropriate synergistic cell guidance cues. In this study, porous scaffolds with different mass ratio of poly(lactic acid) to poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐4HB)) for tissue engineering were prepared by a modified particle leaching method. The effect of the addition of P(3HB‐co‐4HB) on microstructural morphology, compression property, swelling behavior, and enzymatic degradation of hybrid scaffolds was systematically investigated. The results indicated that this method was simple but efficient to prepare highly interconnected biomimetic 3D hybrid scaffolds (PP50/50 and PP33/67) with fibrous pore walls. The cytocompatibility of hybrid scaffolds was evaluated by in vitro culture of mesenchymal stem cells. The cell‐cultured hybrid scaffolds presented a complete 3D porous structure, thus allowing cell proliferation on the surface and infiltration into the inner part of scaffolds. The obtained hybrid scaffolds with pore size ranging from 200 to 450 µm, over 90% porosity, adjustable biodegradability, and water‐uptake capability will be promising for cartilage tissue engineering applications. POLYM. ENG. SCI., 54:2902–2910, 2014. © 2014 Society of Plastics Engineers  相似文献   

13.
Injury caused by trauma, burns, surgery, or disease often results in soft tissue loss leading to impaired function and permanent disfiguration. Tissue engineering aims to overcome the lack of viable donor tissue by fabricating synthetic scaffolds with the requisite properties and bioactive cues to regenerate these tissues. Biomaterial scaffolds designed to match soft tissue modulus and strength should also retain the elastomeric and fatigue-resistant properties of the tissue. Of particular design importance is the interconnected porous structure of the scaffold needed to support tissue growth by facilitating mass transport. Adequate mass transport is especially true for newly implanted scaffolds that lack vasculature to provide nutrient flux. Common scaffold fabrication strategies often utilize toxic solvents and high temperatures or pressures to achieve the desired porosity. In this study, a polymerized medium internal phase emulsion (polyMIPE) is used to generate an injectable graft that cures to a porous foam at body temperature without toxic solvents. These poly(ester urethane urea) scaffolds possess elastomeric properties with tunable compressive moduli (20–200 kPa) and strengths (4–60 kPa) as well as high recovery after the first conditioning cycle (97–99%). The resultant pore architecture was highly interconnected with large voids (0.5–2 mm) from carbon dioxide generation surrounded by water-templated pores (50–300 μm). The ability to modulate both scaffold pore architecture and mechanical properties by altering emulsion chemistry was demonstrated. Permeability and form factor were experimentally measured to determine the effects of polyMIPE composition on pore interconnectivity. Finally, initial human mesenchymal stem cell (hMSC) cytocompatibility testing supported the use of these candidate scaffolds in regenerative applications. Overall, these injectable polyMIPE foams show strong promise as a biomaterial scaffold for soft tissue repair.  相似文献   

14.
This work is a proof of concept for making load bearing implants with osseointegration and bone bonding ability. Yttria-stabilized zirconia (YSZ) scaffolds with a percentage of macro porosity of about 70% were fabricated by robocasting. Although a maximum solids volume fraction of 50 vol.% could be achieved, the 3D-printing process revealed to be more reliable when using inks with 48 vol.% solids. The sintered porous structures exhibited an average compressive strength of ~236 MPa. After some preliminary coating experiments, an ethanol slurry of fine bioactive glass (BG) particles (10 wt.%) stabilized with polyvinylpyrrolidone was used to deposit a uniform surface coating onto the filaments, followed by glazing at 850°C. The functionalized scaffolds showed a relatively uniform surface coverage by the bioactive glass. The results of in vitro testing by immersing the scaffolds in simulated body fluid (SBF) showed remarkable morphological surface changes and an extensive deposition of hydroxyapatite layer. The overall results demonstrate the viability of producing porous YSZ scaffolds with excellent bioactivity, which are promising for bone tissue engineering under load bearing applications.  相似文献   

15.
In our previous study, a three‐dimensional gelatin/bioactive glass nanocomposite scaffold with a total porosity of about 85% and pore sizes ranging from 200 to 500 μm was prepared through layer solvent casting combined with lamination technique. The aim of this study was to evaluate in vitro biocompatibility and in vivo bone regeneration potential of these scaffolds with and without endothelial cells when implanted into a critical‐sized rat calvarial defect. MTT assay, SEM observation, and DAPI staining were used to evaluate cell viability and adhesion in macroporous scaffolds and results demonstrated that the scaffolds were biocompatible enough to support cell attachment and proliferation. To investigate the in vivo osteogenesis of the scaffold, blank scaffolds and endothelial/scaffold constructs were implanted in critical‐sized defects, whereas in control group defects were left untreated. Bone regeneration and vascularization were evaluated at 1, 4, and 12 weeks postsurgery by histological, immunohistochemical, and histomorphometric analysis. It was shown that both groups facilitated bone growth into the defect area but improved bone regeneration was seen with the incorporation of endothelial cells. The data showed that the porous Gel/BaG nanocomposite scaffolds could well support new bone formation, indicating that the proposed strategy is a promising alternative for tissue‐engineered bone defects.  相似文献   

16.
The main objectives of the present study were to fabricate the silicate glass/poly(l-lactide) composite scaffolds for bone engineering applications, by using the freeze-extraction technique, and to evaluate the possibility for optimizing their degradation rate by changing their glass content. The scaffolds characterized by SEM-EDXA, FT-IR, TGA and XRD. Examination of the SEM microphotographs revealed that the pore size of the scaffolds decreased as the glass content increased. The neat polymer scaffold (PLA) had a highly interconnected porous structure with a maximum pore size of 200 μm. For the composite scaffold containing glass content up to 25 wt% (SP25) and up to 50 wt% (SP50), the maximum pore size was 40 μm and 20 μm respectively. The apparent porosity was 56.56%, 52.49% and 48.74% for PLA, SP25 and SP50, respectively. The results of the degradation study showed that the water absorption of the scaffolds decreased by increasing their glass content, It reached finally to 48.71%and 30.93% for SP25 and SP50, respectively. It revealed that also the weight loss of the scaffolds increased by increasing the glass content. The final weight loss was around 5.44%, 9.31% and 26.17% for the PLA, SP25 and SP50, respectively, indicating that it was possible to modulate the degradation rate of the scaffolds by varying their glass content. In addition, the pH measurement of incubation medium indicated that the glass could compensate the acidic degradation products of the polymer. In vitro bioactivity evaluation showed that the composite scaffolds were able to induce the formation of hydroxyapaptite layer on their surfaces, demonstrating their potential application in bone engineering.  相似文献   

17.
《Ceramics International》2017,43(15):11676-11685
The higher melting temperature and longer soaking time during conventional glass melting route promoted the search for alternative in developing new bioactive glass (BG) composition with improved in fabrication temperature and melting time. The current project involved fabrication of new BG compositions based on SiO2-CaO-Na2O-P2O5 system via melt derived route. It was confirmed that all bioactive glass composition can be melted at temperature lower than 1400 °C. Formation of Si-O-Si (tetrahedral) functional group highlighted that silicate based glass was established as detected by Fourier transform infrared spectroscope (FTIR). BG bioactivity was performed by incubating the BG powder in Tris-buffer solution (pH 8) for 7, 14 and 21 days. In vitro test confirmed the apatite formation on the bioactive glass surface upon soaking in Tris-buffer solution with characteristic of carbonate group (C-O) and P-O band noticed from FTIR and present of crystalline peak observed in X-ray diffraction (XRD). Morphology of apatite formation on BG surface was observed using scanning electron microscope (SEM).  相似文献   

18.
Calcium phosphate cements (CPC) have been widely investigated as bone substitutes, owing to their attractive features in terms of physicochemical and biocompatibility properties. However, the clinical applicability of this group of biomaterials is still critically limited by its poor strength and rheological properties in terms of injectability and cohesion. The present work aims to develop novel composite cement based on calcium phosphate cement (CPC) and bioactive glass (BG), associated with sodium alginate hydrogel (Alg). The composition, microstructure, setting, rheological, and mechanical properties of this composite cement were further investigated. Evaluation of setting properties showed that BG participates crucially in the setting reaction as a calcium and phosphate provider and serves as a setting accelerator. Thus, the setting time appears lower in these cements than in the reference CPC cement: it decreases from 75 to 42 min as the BG content increases from 10 to 25 wt% and is delayed from 42 to 73 min while the Alg amount augmented from 1 to 5 wt%. The rheological evaluation revealed that injectability was slightly improved with increasing BG content compared to the injectability of CPC, reaching a value close to 100% when combined with Alg hydrogel. The anti-washout property appeared to be weak for the CPC with or without BG, which are disintegrated in solution. The cohesiveness was significantly improved by introducing Alg hydrogel; furthermore, the addition of 5 wt% of alginate hydrogel induced an increase in the compressive strength about twice (7.2 MPa) higher than that of the reference CPC (4.0 MPa). According to the above findings, the addition of BG acts as a setting accelerator leading to a fast apatite formation, while the introduction of Alg hydrogel as a rheological promoting agent improves the injectability and cohesion. The combination of BG and Alg as additives increased the compressive strength compared to the reference cement.  相似文献   

19.
《Ceramics International》2015,41(7):8425-8432
Highly porous ceramic scaffolds have been fabricated from a 70% SiO2–30% CaO glass powder using stereolithography and the lost-mould process combined with gel-casting. After sintering at 1200 °C the glass crystallised to a structure of wollastonite and pseudowollastonite grains in a glassy matrix with a bulk porosity of 1.3%. All scaffolds had a simple cubic strut structure with an internal porosity of approximately 42% and internal pore dimensions in the range 300–600 μm. The mean crushing strength of the scaffolds is in the range 10–25 MPa with the largest pore sizes showing the weakest strengths. The variability of scaffold strengths has been characterised using Weibull statistics and each set of scaffolds showed a Weibull modulus of m≈3 independent of pore size. The equivalent strength of the struts within the porous ceramics was estimated to be in the range 40–80 MPa using the models of the Gibson and Ashby. These strengths were found to scale with specimen size consistent with the Weibull modulus obtained from compression tests. Using a Weibull analysis, these strengths are shown to be in accordance with the strength of 3-point bend specimens of the bulk glass material fabricated using identical methods. The strength and Weibull modulus of these scaffolds are comparable to those reported for other porous ceramic scaffold materials of similar porosity made by different fabrication routes.  相似文献   

20.
《Ceramics International》2016,42(12):13761-13772
The incorporation of a bioactive inorganic phase in polymeric scaffolds is a good strategy for the improvement of the bioactivity and the mechanical properties, which represent crucial features in the field of bone tissue engineering. In this study, spray-dried mesoporous bioactive glass particles (SD-MBG), belonging to the binary system of SiO2-CaO (80:20 mol%), were used to prepare composite scaffolds by freeze-drying technique, using a silk fibroin matrix. The physico-chemical and biological properties of the scaffolds were extensively studied. The scaffolds showed a highly interconnected porosity with a mean pore size in the range of 150 µm for both pure silk and silk/SD-MBG scaffolds. The elastic moduli of the silk and silk/SD-MBG scaffolds were 1.1±0.2 MPa and 6.9±1.0 MPa and compressive strength were 0.5±0.05 MPa and 0.9±0.2 MPa, respectively, showing a noticeable increase of the mechanical properties of the composite scaffolds compared to the silk ones. The contact angle value decreased from 105.3° to 71.2° with the incorporation of SD-MBG particles. Moreover, the SD-MBG incorporation countered the lack of bioactivity of the silk scaffolds inducing the precipitation of hydroxyapatite layer on their surface already after 1 day of incubation in simulated body fluid. The composite scaffolds showed good biocompatibility and a good alkaline phosphatase activity toward human mesenchymal stromal cells, showing the ability for their use as three-dimensional constructs for bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号