首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2021,47(20):28603-28613
Foam glass is a lightweight and high-strength building and decoration material with superior performance in heat insulation, sound absorption, moisture resistance and fire protection. The use of waste glass powder and fly ash to prepare foam glass is one of the most important ways to utilize solid waste as a resource. In this study, waste glass powder and fly ash were used as raw materials to prepare foam glass by a hydrothermal hot pressing–calcination method. The effects of fly ash content (0 wt%, 10 wt%, 20 wt%, 30 wt%), heating rate (1 °C/min, 3 °C/min, 5 °C/min, 8 °C/min, 10 °C/min) and calcination temperature (600 °C, 700 °C, 750 °C, 800 °C, 850 °C, 900 °C) on the microscopic morphology, density, compressive strength, porosity and other properties of the foam glass samples were studied. Their microstructure and morphology were analyzed by thermogravimetric analysis–mass spectrometry, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. At a fly ash content of 10 wt%, the heating rate was 5 °C/min, the calcination temperature was 800 °C, the foam glass density was 0.3 g/cm3, the compressive strength was 1.65 MPa, the total porosity was 75.5%, and the effective thermal conductivity was 0.206 W/m·K. The effective thermal conductivity models of the composite materials were used to verify the experimental data. The relationship between the thermal conductivity of foam glass materials and the related influencing factors was investigated.  相似文献   

2.
This paper reports the results of investigation to assess the suitability of volcanic ash (VA) and pumice powder (VPP) for blended cement production. Tests were conducted on cement where Portland cement (PC) was replaced by VA and VPP within the range of 0 to 50%. The physical and chemical properties of VA and VPP were critically reviewed to evaluate the possible influences on cement properties. The investigation included testing on both fresh and hardened states of cement paste. The standard tests conducted on different PC-VA and -VPP mixtures provided encouraging results, comparable to those for fly ash (FA) cement, and showed good potential of manufacturing blended Portland volcanic ash cement (PVAC) and Portland volcanic pumice cement (PVPC) with higher setting time and low heat of hydration using up to 20% replacement.  相似文献   

3.
Due to the numerous increase of the building energy consumption and huge volume of industrial wastes produced in China, the development of thermal insulation materials is quite needed. Herein, foam glass ceramic, a kind of thermal insulation materials, was fabricated by using solid wastes high alumina fly ash and waste glass as the main raw materials. First, in this study the proportion scheme of this research was designed by using Factsage 7.1 and the foaming agent was CaSO4. Secondly, the decomposition of calcium sulfate and the influence of process parameters, namely the sintering temperature and the foaming agent additive amount, on the microstructure and mechanical properties of foam glass ceramic were investigated. The experimental results showed that when the proposed foam glass ceramic was sintered at between 1180 and 1220?°C, it exerted excellent macro and micro properties. The optimum parameters were 2% CaSO4 addition and sintering temperature of 1200?°C, and the corresponding bulk density and compress strength values were 0.98?g/cm3 and 9.84?MPa, respectively. Overall these results indicated that the preparation of foam glass ceramic made up a promising strategy for recycling industrial waste into new kind of building insulation materials.  相似文献   

4.
Porcelain is a material produced from kaoline, quartz and potassium-feldspar. Recently, research of new materials, for example non-hazardous wastes, that are able to replace traditional fluxing agents without changing the process or quality of the final products has been realized. The aim of this work is to study the possibility of the use of glass powder waste and fly ash together for manufacturing porcelain. Instead of quartz, fly ash was used at the selected porcelain composition. The waste glass was added partially and fully in replacement of potassium-feldspar. Samples were fired in an electric furnace with a heating rate of 10 °C/min at 1100, 1150 and 1200 °C for a period of 1, 2, 3 and 5 h. The sintered samples were characterised by XRD (X-ray diffraction) and SEM (scanning electron microscopy). Sintering activation energies were determined based on the bulk density result. At 10, 15, 20 and 25 wt.% glass waste addition, the apparent activation energies were calculated to be 145, 113.5, 70.4 and 53.74 kJ/mol, respectively. It was found that the sintering activation energy decreased with increasing waste glass addition.  相似文献   

5.
Using waste LCD glass as a base material helped developed the manufacturing process of the spherical foamed body and its varied functionality. Also, the manufactured spherical foamed body showed great performance as a water treatment media. By mixing 90 wt% of waste LCD glass, 100 parts by weight of glass mixture that has 10 wt% kaolinite as a shaping agent, 1.0 part by weight of carbon foaming agent, and mixture of each 1.5 parts by weight of Na2CO3, CaCO3 and Na2SO4 as foaming agents and the MgO as a parting agent for 10 min of foaming calcination in the rotary kiln at 970–1000 °C, the spherical foamed body can be manufactured effectively. The manufactured spherical foamed body performed as a great water treatment media by showing 70.5% of SS removal efficiency, 56.1% of BOD removal efficiency, 57.5% of COD removal efficiency, 28.6% of denitrification and 49.8% of phosphorous removal.  相似文献   

6.
Ultra-light ceramic foams were successfully prepared by a green spheres technique, which used waste glass powder and fly ash as the main material. Besides, borax and SiC were introduced as fluxing agent and foaming agent, respectively. The effects of fly ash content, borax content and sintering temperature on the microstructures and properties of ceramic foams were systematically investigated. The optimum composition is 30?wt-% fly ash, 70?wt-% waste glass, 15?wt-% borax and 0.5?wt-% SiC. Ultra-light ceramic foams sintered at 680–780°C possess bulk density of 0.14–0.41?g?cm?3, porosity of 82.9–94.1%, compressive strength of 0.91–6.37?MPa and thermal conductivity of 0.070–0.121?W?m?1?K?1, respectively. This method is convenient, low-cost and environment friendly, which makes it a promising way for recycling solid wastes.  相似文献   

7.
《Ceramics International》2020,46(15):23623-23628
The utilisation of nickel slag and waste glass powder as raw materials for preparing foamed ceramic was studied. The influences of the mixture design and foaming-agent dosage on the properties and microstructures of foamed ceramic were investigated in terms of the density, flexural strength, phase composition and micromorphology. Results showed that incorporating nickel slag improved the flexural strength and uniformity of the pore structure. However, owing to the high density of nickel slag, its excessive usage may impact the development of foamed ceramic density and porosity as a side effect. The Na2CO3 dosage was another crucial factor determining foamed ceramic properties. A nickel slag content of was 20% and a Na2CO3 content of 7% decreased the foamed ceramic density to 0.498 g/cm3, with a corresponding flexural strength of 2.66 MPa and a higher porosity of 80.06%.  相似文献   

8.
Hardened bodies were fabricated from Japanese volcanic ash after mixing with an alkali solution, molding, and curing. The volcanic ash was composed of approximately 70% crystalline anorthite sodium [(Ca, Na) (Si, Al)4O8] phase and ≤30% amorphous silicate phase. First, a starting mixture was prepared by mixing the ground volcanic ash with a sodium hydroxide solution. The mixture was placed in a plastic mold using a glass rod, and then cured at 50 °C and 80% relative humidity for 3 days. The compressive strength of the resulting hardened body increased with increasing concentration of sodium hydroxide solution. When a 13.5 mol/L sodium hydroxide solution was used, the average compressive strength of the hardened body reached 80.1 MPa. The hardening mechanism for the volcanic ash during curing is discussed.  相似文献   

9.
When the reaction of salt and zeolite was used to minimize the free salt in waste forms (r = 0.1), Cs showed the lowest leaching rate, 1.015 × 10−1 g/m2 d. Because alkali chloride is chemically stable, the reaction that alkali elements become components of glass does not happen and thus the leach resistance of the waste form solidified with soda glass was not much different from that solidified with borosilicate glass. The crystalline phase containing Cl was sodalite, but the tendency that Cs exists prior to sodalite phase was not confirmed. From a result of a long-term leaching, the predicted leaching fraction of Cs in 900 days was as high as 5.13%, but that of Sr was as low as 0.24%. The leaching experiment with a varying pH showed the major nuclides such as Cs, Sr, and Li in salt waste had different leaching characteristics each other.  相似文献   

10.
《Ceramics International》2021,47(20):28904-28912
Novel glass ceramics for LTCC applications with high flexural strength can be achieved by CaO-MgO-ZnO-SiO2(CMSZ) glass cofiring with Al2O3. The sintering shrinkage behavior, crystalline phases, mechanical and dielectric properties, and thermal expansion of the CMZS/Al2O3 glass ceramic were determined. The X-ray diffraction results revealed that multiphases (CaMgSi2O6, Al2Ca(SiO4)2 and ZnAl2O4) formed in the sintering process of the CMZS/Al2O3 glass ceramic. The flexural strength of CMZS/Al2O3 glass ceramics first increases and then decreases with increasing Al2O3 content. The CMZS/Al2O3 glass ceramic with 50 wt % Al2O3 sintered at 890 °C for 2 h achieved the best performance, with a maximum flexural strength of 256 MPa, dielectric constant (εr) of 7.89, dielectric loss (tan δ) of 3.41 × 10−3 (12 GHz), temperature coefficient of resonance frequency (τf) of −29 ppm/°C, and the CTE value of 7.93 × 10−6/°C.  相似文献   

11.
《Ceramics International》2020,46(8):11770-11775
Glass foams are modern developed building materials which are now favorably competing with conventional materials for applications in thermal insulation. In this study, glass foams are synthesized solely from waste container glasses of mixed colors using sodium silicate (water glass) as foaming agent. Several glass foams of 150 × 150 × 30 mm were prepared from waste glasses of 75 μm, 150 μm and 250 μm size with addition of 15 wt % sodium silicate respectively and pressed uniaxially under a pressure of 10 MPa. The prepared glass foams were then sintered at temperatures of 800 °C and 850 °C respectively. Tests such as bulk density, estimated porosity, flexural strength, compressive strength and microstructure evaluation were used to assess the performance of the developed glass foams. The results showed that with increasing temperature and grain sizes, the percent porosity of the developed foams increased while the bulk density decreased. The microstructure evaluation showed that the finer the grain sizes used, the more homogenized are the pores formed and the higher the temperature, the larger the pores but are mostly closed. Both compressive and flexural strength were found to decrease with grain sizes and higher temperatures. The thermal conductivities of all the developed foam glasses satisfy the standard requirement to be used as an insulating material as their thermal conductivities did not exceed 0.25 W/m.K.  相似文献   

12.
任启芳  王立久  丁益  胡普华 《应用化工》2011,40(8):1332-1335
以粉煤灰为主要原材料,添加适当的工业级硼酸、石灰石、氧化锌、氧化镁、二氧化硅、碳酸钠作为辅助材料,选择铝硅酸盐系统作为配方,制备基础玻璃。通过DTA和TEM研究不同配比的基础玻璃配方表明,最合理基础玻璃在1 200℃熔制是可行的,粉煤灰的利用率达到了30%以上,最适宜的玻璃组成是(%):S iO245~60,A l2O39~15,CaO 12~20,MgO 2~5,Na2O 3~11,ZnO 2~5,S 0~1,B2O30.5~1.5,F 0~2.5。  相似文献   

13.
CaTiO3 ceramics with the addition of CaO-B2O3-SiO2 (CBS) glass (45–55 wt%) composites were sintered at 830 °C, 850 °C, 875 °C and 900 °C. To illustrate influence mechanism of the different glass contents and sintering temperatures on the properties of the composites, we focused on the multiple performances of the composites by employing different qualitative and quantitative instruments. Composites with 50 wt% glass sintered at 875 °C presented fairly ideal performance: the bulk density was 3.20 g/cm3, the dielectric constant was 25.7 and the dielectric loss was 0.0009 at 7 GHz. Micro-Structure analysis of the composites showed a dense and pore-less microstructure except for few pores with size around 1 μm. In addition, the composite could meet the shrinkage requirement of Ag electrodes and could not possibly react with Ag electrodes any more. This makes them suitable for various dielectric applications at low sintering temperature.  相似文献   

14.
15.
Glass foams have great potential for several technological applications, for example, filters and thermal or acoustic insulators. Sodium hydroxide is an efficient foaming agent to obtain glass foams with high level of porosity. However, the control of variables that influences on structure, type, and size of pores of glass foams is necessary. This study evaluates the influence of composition and process parameters on glass foams based on soda-lime glass waste, sodium hydroxide, and borax. Experiments were conducted using factorial designs. According to the experimental conditions, bulk density varied from 0.16 to 0.79 g cm−3 and maximum porosity of 92%. Amounts of NaOH and borax in addition to sintering temperature are the main variables of the foaming process. The role of NaOH content is to reduce the density and closed porosity of glass foams associated with an increase in their open porosity. The addition of borax with low NaOH amount promoted densification and pore closure in glass foams. NaOH and borax content allows controlling the type of predominant porosity on foams (open or closed porosity). Glass foams were resistant to sulfuric acid, hydrochloric acid, and nitric acid in diluted solutions. These results allow controlling the pore structure of glass foams for different applications.  相似文献   

16.
The deterioration of concrete structures due to the presence of mixed sulfate in soils, groundwater and marine environments is a well-known phenomenon. The use of blended cements incorporating supplementary cementing materials and cements with low C3A content is becoming common in such aggressive environments. This paper presents the results of an investigation on the performance of 12 volcanic ash (VA) and finely ground volcanic pumice (VP) based ASTM Type I and Type V (low C3A) blended cement concrete mixtures with varying immersion period of up to 48 months in environments characterized by the presence of mixed magnesium-sodium sulfates. The concrete mixtures comprise a combination of two Portland cements (Type I and Type V) and four VA/VP based blended cements with two water-to-binder ratio of 0.35 and 0.45. Background experiments (in addition to strength and fresh properties) including X-ray diffraction (XRD), Differential scanning calorimetry (DSC), mercury intrusion porosimetry (MIP) and rapid chloride permeability (RCP) were conducted on all concrete mixtures to determine phase composition, pozzolanic activity, porosity and chloride ion resistance. Deterioration of concrete due to mixed sulfate attack and corrosion of reinforcing steel were evaluated by assessing concrete weight loss and measuring corrosion potentials and polarization resistance at periodic intervals throughout the immersion period of 48 months. Plain (Type I/V) cement concretes, irrespective of their C3A content performed better in terms of deterioration and corrosion resistance compared to Type I/V VA/VP based blended cement concrete mixtures in mixed sulfate environment.  相似文献   

17.
《Ceramics International》2022,48(16):23468-23480
Lightweight aggregates (LWAs) with microcrystalline diopside as the main constituent were prepared in this study. Waste glass and waste muck were used as the main raw materials, and the formula was designed according to the chemical composition of diopside, rather than using the Riley scheme. The effects of the glass content and nucleating agent on the mechanical properties, mineral composition, and microstructure of LWAs were studied. The results indicated that the presence of diopside crystallites can significantly improve the mechanical properties of LWAs. With an increase in the glass content from 0 wt % to 70 wt %, the strength of the LWAs increased from 12.21 MPa to 19.31 MPa with similar densities in the range of 1.667–1.687 g/cm3. The addition of a nucleating agent has a fluxing effect and promotes the formation and growth of diopside, which provides aggregates with high strength and low density. For example, the addition of CaF2 decreased the density of the LWAs from 1.687 g/cm3 to 1.461 g/cm3 and increased the strength from 17.59 MPa to 20.81 MPa under the same calcination regime. The effect of the pore structure on the mechanical properties of the LWA in this experiment was far less than that of the crystal phase composition. With the addition of a nucleating agent, the diopside was co-precipitated from both the muck and glass. If no nucleating agent is added, diopside mainly precipitates from glass, and muck mainly forms a glass phase.  相似文献   

18.
Diopside-albite glass-ceramics were fabricated by sintering the powder mixtures of crystallization promoters and waste glass. Two kinds of promoters were synthesized using kaolin clay, talc and chemical reagents. The crystalline phases were formed by a reactive crystallization between promoters and glass during sintering. The effect of promoter components, additions and sintering temperatures on the crystallizing and densifying behavior, microstructures and mechanical properties of glass-ceramics was investigated. The results showed that the higher densities and better mechanical properties were obtained for the glass-ceramics with 12-15% crystallization promoters sintered at 950 °C for 2 h.  相似文献   

19.
《Ceramics International》2022,48(2):1494-1511
The application of insulation materials in buildings and energy storage facilities is gaining global attention to reduce energy consumption, heat loss, and CO2 emissions. Given the high insulation performance, glass foam is gaining popularity replacing combustible, high energy-consuming, and costly conventional insulation materials. The industrial process of glass foam manufacturing is an energy-consuming and non-ecofriendly process which requires the annealing of glass around its melting temperature. Therefore, researchers have developed powder sintering and gel casting methods to sinter glass foam mix at a temperature slightly above its glass transition point. However, research findings on these two methods are scattered because of the different parameters being used by researchers. The properties and performances of glass foam depend on the processing parameters, especially on the materials design and sintering conditions. Therefore, this study aimed to provide a comprehensive review on the key parameters for material selection and sintering of glass foams and provide necessary guidelines for the best practice and a direction for future research. Moreover, this review covers the current strategies and challenges associated with the powder sintering and gel casting methods including their sustainability and environmental performance.  相似文献   

20.
This study incorporates fine waste glass (GS) as a replacement for natural sand (NS) in fly ash (FA) and/or ground granulated blast furnace slag (GGBS) based alkali activated mortar (AAm). Tests were conducted on the AAm to determine the mechanical properties, water absorption, apparent porosity and the durability based on its resistance to Na2SO4 5% and H2SO4 2% concentrated solutions. Whereas the microstructure and chemical composition of AAm was analyzed by SEM-EDX to support results obtained from the experimental tests. The study revealed that the effects of GS depends on the ratio of binders used to synthesize the mortar. For high FA/GGBS mortar, an increase in strength and reduction of porosity was observed with increasing GS up to 50 wt%. For lower FA/GGBS mortar, increasing GS up to 100 wt%, increased strength and decreased porosity. The lower porosity attained with the incorporation of GS, improved the resistance of mortar to Na2SO4 solution thus increasing durability. The resistance of mortar to H2SO4 was also improved with lower porosity due to incorporation of GS. However, the durability of mortar was negatively impacted with the further reduction of porosity observed with increasing GS and GGBS above 50 wt% believed to be caused by the stress induced as a result of expansive reaction products created when the mortar reacted with acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号