首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(6):8993-8999
The function of ceramic coating is closely related to the construction technology and the quality of ceramic powders. Generally, Al2O3–ZrO2 powders are rapidly sprayed on the material surface at high temperatures to obtain better performance. Improving the quality of Al2O3–ZrO2 powders can make them more widely used in ceramic coating. In this paper, microwave sintering was used to enhance the sintering process of the powders, and the effect of sintering time on the microstructure, properties, and stability of Al2O3–ZrO2 powders was investigated. The results proved that microwave heating could improve the crystallinity and stability of the samples. At 900 °C, the tetragonal phase content in samples with different sintering times were 63.05%, 63.25%, 62.39%, and 63.22%, respectively. The average particle sizes obtained by Gaussian fitting are 1.04 μm, 0.83 μm, 0.88 μm, 0.86 μm, respectively. The Gaussian fitting particle size data was consistent with the normal distribution. Compared with the particle size of raw material (1.10 μm), the particles were refined, and the dispersion effect was noticeable. Therefore, the best sintering time for microwave sintering Al2O3 stabilized zirconia was 2 h. This paper aims to provide reasonable data support for improving the preparation of high-quality Al2O3-PSZ ceramic powders and to guide the industrial production of Al2O3-PSZ powders.  相似文献   

2.
《Ceramics International》2022,48(24):36764-36772
In this study, the influence of alternating current (AC) electric field on flash sintering and microstructural evolution of alumina–zirconia (Al2O3–ZrO2) composite was systematically investigated at furnace temperature of 800 °C. Compared with direct current (DC) electric field, AC electric field not only promoted densification and grain growth of Al2O3–ZrO2 composite, but also improved the uniformity of microstructure of ceramics. Grain size of AC flash-sintered samples was found to be inversely related to electric field, and positive correlation was observed with current density limit. Dense Al2O3–ZrO2 composite ceramic was fabricated via AC flash sintering under 60 mA mm?2 at low furnace temperature within 120 s, and as-sintered samples exhibited relatively good mechanical properties. The mechanism involving synergistic effect of Joule heating and defects generation under the influence of electric field was proposed to explain rapid densification during AC flash sintering. These results indicate the feasibility of preparation of dense composite ceramic with homogeneous microstructure via AC flash sintering.  相似文献   

3.
4.
《Ceramics International》2020,46(7):9002-9010
Structural ceramics such as Al2O3 and Al2O3–ZrO2 composites are widely used in harsh environment applications. The conventional sintering process for fabrication of these ceramics is time-consuming method that requires large amount of energy. Microwave sintering is a novel way to resolve this problem. However, to date, very limited research has been carried out to study the effects of different ZrO2 crystal structures on Al2O3–ZrO2 composites, especially on the sintering kinetics, when fabricated by microwave sintering.The microwave hybrid sintering of Al2O3 and Al2O3–ZrO2 composites was performed in this study. Tetragonal zirconia and cubic zirconia were used as two different reinforcements for an α–alumina matrix, and the mechanical and thermal properties were studied. It was found that Al2O3 experienced a remarkable increase in fracture toughness of up to 42% when t-ZrO2 was added. Al2O3–c-ZrO2 also showed increased fracture toughness. The sintering kinetics were also thoroughly investigated, and the average activation energy values for the intermediate stage of sintering were estimated to be 246 ± 11 kJ/mol for pure Al2O3, 319 ± 71 kJ/mol for Al2O3–c-ZrO2, and 342 ± 77 kJ/mol for Al2O3–t-ZrO2. These values indicated that the activation energy was increased by the addition of either type of ZrO2, with the highest value shown by Al2O3–t-ZrO2.  相似文献   

5.
The microstructure and phase transformations in the AlN–Al2O3 pseudo-binary system of samples having an AlN content in mol% ranging between 44 and about 0 are reported as a function of the thermal treatments. The nature of the phase equilibria, temperature and composition range and coherence degree of the different phases were studied by using various complementary experimental techniques.  相似文献   

6.
《Ceramics International》2023,49(13):21652-21657
Today, many industrial applications require components that work under extreme conditions, especially at very high temperatures (>1200 °C) for a long time. An excellent combination of properties such as low thermal conductivity, low coefficient of thermal expansion and high chemical resistance are required for such applications. Advanced ceramic materials based on zircon-zirconia composites (ZrSiO4–ZrO2) possess these properties, thus making them attractive for, i.e., high-level radioactive waste immobilisation. The main drawback of these materials are the high temperatures and long residence times required to sinter them and obtain high densities, which entails high energy consumption and costs. Therefore, non-conventional microwave sintering is a very powerful and efficient technique capable of reducing sintering temperatures and holding times. The objective of this study is to evaluate the microwave sinterability of zircon-zirconia powders obtained by colloidal methods (80–20 vol% and 20–80 vol% ZrSiO4–ZrO2). A stability study of the phases present was carried out by X-ray diffraction and the mechanical and microstructural properties were evaluated in order to obtain the best materials with outstanding final properties.  相似文献   

7.
《Ceramics International》2016,42(9):11003-11009
A low temperature sintering method was used to avoid the relatively high sintering temperatures typically required to prepare 0.67CaTiO3–0.33LaAlO3 (CTLA) ceramics. Additionally, CeO2 was introduced into the CTLA ceramics as an oxygen-storage material to improve their microwave dielectric properties. 0.67CaTiO3–0.33LaAlO3 ceramics co-doped with B2O3–Li2O–Al2O3 and CeO2 were prepared by a conventional two-step solid-state reaction process. The sintering behavior, crystal structure, surface morphology, and microwave dielectric proprieties of the prepared ceramic samples were studied, and the reaction mechanism of CeO2 was elucidated. CTLA+0.05 wt% BLA+3 wt% CeO2 ceramics sintered at 1360 °C for 4 h exhibited the optimal microwave dielectric properties: dielectric constant (εr)=45.02, quality factor (Q×f)=43102 GHz, and temperature coefficient of resonant frequency (τf)=2.1 ppm/°C. The successful preparation of high-performance microwave dielectric ceramics provides a direction for the future development and commercialization of CTLA ceramics.  相似文献   

8.
Electroconductive ZrO2–Al2O3–25 vol% TiN ceramic nanocomposites were prepared by spark plasma sintering at 1200 °C for 3 min. The electrical resistivity of the composites decreased from 4.5 × 10?4 Ω m to 3 × 10?5 Ω m as the Al2O3 content in the ZrO2–Al2O3 matrix increased from 0 to 100 vol%. SEM images graphically presented the microstructural evolution of the composites and a geometrical percolation model was applied to investigate the relationship between the electrical property and the microstructure. The results indicated that the addition of Al2O3 to ZrO2–TiN improved the electrical conductivity of the material by tailoring the structure from “nano–nano” type for ZrO2–TiN to “micro–nano” type for ZrO2–Al2O3–TiN.  相似文献   

9.
We investigated the sintering behavior of Cr2O3–Al2O3 ceramic materials. In our observation of the isothermal shrinkage behavior of Cr2O3–Al2O3 ceramic, the activation energy of sintering reaction was measured to be 102 kJ/mol, that is, the near value of the activation energy of diffusion of Al ions in Al2O3 single crystal. Therefore the diffusion of cations is believed to control the sintering behavior of this material. With the addition of TiO2, (the compound chosen to accelerate the diffusion of cations) to Cr2O3–Al2O3, the sintering behavior was accelerated.  相似文献   

10.
For the development of a new wear resistant and chemically stable glass-ceramic glaze, the CaO–ZrO2–SiO2 system was studied. Compositions consisting of CaO, ZrO2, and SiO2 were used for frit, which formed a glass-ceramic under a single stage heat treatment in electric furnace. In the sintered glass-ceramic, wollastonite (CaSiO3) and calcium zirconium silicate (Ca2ZrSi4O12) were crystalline phases composed of surface and internal crystals in the microstructure. The internal crystal formed with nuclei having a composition of Ca1.2Si4.3Zr0.2O8. The CaO–ZrO2–SiO2 system showed good properties in wear and chemical resistance because the Ca2ZrSi4O12 crystals positively affected physical and mechanical properties.  相似文献   

11.
Multi-walled carbon nanotubes (MWCNTs) are often reported as additives improving mechanical and functional properties of ceramic composites. However, despite tremendous efforts in the field in the past 20 years, the results are still inconclusive. This paper studies room temperature properties of the composites with polycrystalline alumina matrix reinforced with 0.5–2 vol.% MWCNTs (composites AC) and zirconia toughened alumina with 5 vol.% of yttria partially stabilised zirconia (3Y-PSZ) containing 0.5–2 vol.% of MWCNTs (composites AZC). Dense composites were prepared through wet mixing of the respective powders with functionalised MWCNTs, followed by freeze granulation, and hot-pressing of granulated powders. Room temperature bending strength, Young's modulus, indentation fracture toughness, thermal and electrical conductivity of the composites were studied, and related to their composition and microstructure. Slight increase of Young's modulus, indentation fracture toughness, bending strength, and thermal conductivity was observed at the MWCNTs contents ≤1 vol.%. At higher MWCNTs contents the properties were impaired by agglomeration of the MWCNTs. The DC electrical conductivity increased with increasing volume fraction of the MWCNTs.  相似文献   

12.
The effect of addition of nanocrystalline ZrO2 and TiCN to ultrafine Al2O3 on mechanical properties and microstructure of the composites developed by spark plasma sintering (SPS) was investigated. The distribution of the nanoparticles was dependent on their overall concentration. Maximum hardness (21 GPa) and indentation toughness (5.5 MPa m1/2) was obtained with 23 vol% nanoparticles, which was considered as the optimum composition. The Zener pinning criteria were also satisfied at this composition with grain size of the restraining nanoparticles ~63–65 nm. Hardness of the composites follows the rule of mixtures; crack deflection and crack arrest by nanoparticles at grain boundaries along with mixed fracture mode led to high toughness in the nanocomposites. Cutting tool inserts were developed by SPS with the optimized composition and their machining performance was compared with commercial alumina based inserts. Increased toughness in the nanocomposite inserts reflects in the machining performance as the tool life improves drastically compared to that of the commercial inserts at high cutting speeds ≥500 m min?1. This was attributed to differences in their failure modes; the commercial inserts fail catastrophically by fracture due to their low toughness whereas the nanocomposite inserts reach the tool failure criteria by crater wear at all machining conditions.  相似文献   

13.
ZrO2 is an effective nucleation agent for low-expansion lithium–aluminum silicate (LAS) glass–ceramic (GC) with high Al2O3 content. However, the effect of ZrO2 is still not fully understood in LAS glasses with low contents of Al2O3 and P2O5. In this work, the effect of ZrO2 on the phase separation and crystallization of Li2O–Al2O3–SiO2–P2O5 glasses were investigated. The results revealed that ZrO2 significantly increased Tg and the crystallization temperature of Li2SiO3 and Li2Si2O5 crystals. Li3PO4 crystals precipitated preferentially in the glass containing 3.6-mol% ZrO2, wherein Zr was stable in the network and no precipitation of ZrO2 nanocrystals was observed. Moreover, the separation of phosphate-rich phases in the as-quenched glasses increased with the addition of ZrO2. The findings of the study revealed a dual role of ZrO2. First, ZrO2 acted as a glass network former rather than a nucleation agent, increasing glass viscosity and the nucleation barrier of Li2SiO3 through its strong network connectivity. Second, as Zr preferentially combined with non-bridging oxygen to form Si–O–Zr linkages, a sufficient amount of charge-balancing Li+ ions existed in the network, which promoted the separation of phosphate-rich phases. It indicated that the incorporation of ZrO2 contributes to the activation of the nucleation role of P2O5, thus contributing to the formation of nanocrystals and fine microstructure of GCs.  相似文献   

14.
15.
《Ceramics International》2016,42(7):7943-7949
This paper reports the investigation of the performance of Li2O–B2O3–SiO2 (LBS) glass as a sintering aid to lower the sintering temperature of BaO–0.15ZnO–4TiO2 (BZT) ceramics, as well as the detailed study on the sintering behavior, phase evolution, microstructure and microwave dielectric properties of the resulting BZT ceramics. The addition of LBS glass significantly lowers the sintering temperature of the BZT ceramics from 1150 °C to 875–925 °C. Small amount of LBS glass promotes the densification of BZT ceramic and improves the dielectric properties. However, excessive LBS addition leads to the precipitation of glass phase and growth of abnormal grain, deteriorating the dielectric properties of the BZT ceramic. The BZT ceramic with 5 wt% LBS addition sintered at 900 °C shows excellent microwave dielectric properties: εr=27.88, Q×f=14,795 GHz.  相似文献   

16.
Alumina ceramics reinforced with 1, 3, or 5 vol.% multi-walled carbon nanotubes (CNTs) were densified by pressureless sintering. Commercial CNTs were purified by acid treatment and then dispersed in water at pH 12. The dispersed CNTs were mixed with Al2O3 powder, which was also dispersed in water at pH 12. The mixture was freeze dried to prevent segregation by differential sedimentation during solvent evaporation. Cylindrical pellets were formed by uniaxial pressing and then densified by heating in flowing argon. The resulting pellets had relative densities as high as ~99% after sintering at 1500 °C for 2 h. Higher temperatures or longer times resulted in lower densities and weight loss due to degradation of the CNTs by reaction with the Al2O3. A CNT/Al2O3 composite containing 1 vol.% CNT had a higher flexure strength (~540 MPa) than pure Al2O3 densified under similar conditions (~400 MPa). Improved fracture toughness of CNT–Al2O3 composites was attributed to CNT pullout. This study has shown, for the first time, that CNT/Al2O3 composites can be densified by pressureless sintering without damage to the CNTs.  相似文献   

17.
In this paper, silicon carbide ceramics were prepared by aqueous gelcasting and pressureless sintering using Al2O3 and Y2O3 as the sintering additives. In order to develop well dispersed SiC slurries in the presence of sintering additives, the Al2O3 and Y2O3 powder was treated in the citric acid solution in advance. Zeta potential measurement showed that the isoelectric point (IEP) of Al2O3 and Y2O3 powder moved toward low pH region after treatment. Rheological measurement confirmed that the addition of as-treated powder showed very limited influence on the slurry properties as compared to that of untreated powder. SiC slurries with solid content of 54 vol% and enough fluidity can be developed. After gelcasting and pressureless sintering, SiC ceramics with nearly full density, fine grained and homogeneous microstructure can be obtained. Results showed that the surface treatment of Al2O3 and Y2O3 with citric acid is effective for the gelcasting process of SiC.  相似文献   

18.
《Ceramics International》2021,47(22):31555-31560
Herein, Al2O3–ZrO2 multiphase ceramics with a eutectic molar ratio were prepared using the flash sintering technique at 1200 °C in 2 min. The samples were divided into two regions according to the microscopic morphology: multiphase ceramics zone and eutectic ceramics zone. The multiphase ceramics zone uniformly distributed irregular Al2O3 and ZrO2 phases. The eutectic zone presented typical eutectic morphology, where different morphologies of ZrO2 was uniformly embedded in the Al2O3 matrix, mainly showing fine lamellar, rod-like and irregular network morphology. Overall, flash sintering is a promising route to prepare high-performance multiphase ceramics.  相似文献   

19.
《应用陶瓷进展》2013,112(3):178-182
Abstract

Effects of heat treatment conditions on phase transformation, microstructure and thermal expansion coefficient (TEC) in MgO–Al2O3–SiO2 system glass–ceramics were investigated by means of differential thermal analysis, X-ray diffraction and scanning electron microscopy. The magnesium aluminium titanate (MAT) precipitated firstly at 850°C and β-quartz solutions (β-QSS) formed at 950°C. Further increasing temperature to 1000°C, MAT disappeared and β-QSS became master phase, following little amount of α-cordierite, MgTi2O5, rutile and sapphirine. When glass was treated at 1050°C, β-QSS content decreased and α-cordierite became master phase. As temperature reached higher than 1100°C, β-QSS and sapphirine disappeared, and α-cordierite became master phase accompany with rutile and MgTi2O5 as secondary phase. The microstructure transformed gradually from particle shape crystallites to slat shape network with the increase in heat treatment temperature. By controlling heat treatment condition, an ideal glass–ceramics with proper TEC for matching sealing to 4J29 alloy has been obtained.  相似文献   

20.
Cordierite aerogels, made by supercritical drying, and xerogels, formed by ambient pressure drying, have been prepared by combining two different recipes. The chemical composition of the gels varied from stoichiometric cordierite 2MgO·Al2O3·5SiO2 to 0·5MgO·1·4Al2O3·5SiO2 due to different procedures for washing of the gels. The crystallization of nearly stoichiometric cordierite gels was shown to be relatively complex involving the formation of several metastable phases such as μ-cordierite (Mg2Al4Si5O18), spinel (Al6Si2O13) and sapphirine (Mg4Al8Si2O20) before the equilibrium phase composition was obtained at around 1350°C. On the other hand, during crystallization of gels with stoichiometry close to 0·5MgO·1·4Al2O3·5SiO2 the equilibrium phases mullite, cristobalite and α-cordierite were the major phases formed during heat treatment. A lower densification rate was observed for aerogels compared to xerogels due to a larger pore size. A lower crystallization temperature in aerogels probably due to heterogeneous nucleation reduced the densification. For gels with a composition near 0·5MgO·1·4Al2O3·5SiO2 nucleation and densification occur simultaneously and large differences in the densification behavior was observed. ©  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号