首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fiber-reinforced ceramic matrix composites (CMCs) exhibit excellent thermo-mechanical properties including outstanding resistance against damage and fatigue. Some CMCs show occasionally even a strength enhancement after fatigue, often interpreted with relieve of internal stresses and interfacial degradation. This study reports the influence of low-cycle thermo-mechanical preloading on the bending and tensile strength of carbon fiber-reinforced silicon carbon (C/C-SiC). For this purpose two C/C-SiC materials with the same fiber architecture but different assumed internal stress states were subjected to single and cyclic mechanical preloads up to 90% of their ultimate strength level at room temperature and at 350 °C. Statistical evaluations of the experiments show that the ultimate strength values were surprisingly unchanged after preloading. The results are discussed regarding the thermal residual stresses (TRS).  相似文献   

2.
《Ceramics International》2022,48(3):3544-3553
In this study the effects of thermal shock on the impact damage resistance, damage tolerance and flexural strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates with balanced and symmetric layup were gradually heated to 1200°C in an air-based furnace and held for at least 30 min before being removed and immersed in water at room temperature. The laminates were then subjected to low velocity impacts via a hemispherical steel impactor. The resultant damage was characterized non-destructively, following which the laminates were subjected to compression tests. Three-point bend tests were also performed to evaluate the effect of thermal shock on the flexural strength and related failure modes of the laminates. Thermally shocked laminates showed smaller internal damage and larger external damage areas in comparison to their pristine counterparts. For the impact energy and resultant damage size considered, the residual compressive strengths for the thermally shocked and pristine laminates were similar.  相似文献   

3.
Poly(vinyl alcohol) was crosslinked with hexamethylene diisocyanate in solution. A broad range of degrees of crosslinking, from 1.7 up to 74 mol% of reacted hydroxyl groups, was achieved. The variation of the thermal and mechanical properties of PVA with the crosslinking density show an initial decrease due to the diminution of the crystallinity of the system, caused by the crosslinking. After an abrupt rise at about 20%, the properties tend to level off independently on the increase of the crosslinking. This behaviour is explained as a result of the competitive action of at least three factors during the crosslinking: (i) weakening of the existing physical network due to hydrogen bonding; (ii) formation of a chemical network; and (iii) introduction of flexible moieties. The last factor is closely connected with the specific chemical structure of the crosslinker itself.  相似文献   

4.
《Ceramics International》2016,42(7):8136-8139
The aim of this study was to evaluate the effect of surface treatments on the roughness and bond strength of dental materials containing MDP to zirconium oxide ceramic. Forty square-shaped zirconium-oxide ceramic blocks (Lava Zirconia, 3M-ESPE) were treated as follows: (CT) polished only; (SB) sandblasting (110 µm aluminum oxide particles) or (SC) silica coating (110 µm particles). Roughness of treated surface was measured using a profilometer (Ra) and by atomic force microscope (AFM). Two resin luting agents were used after silane application: self-adhesive (Rely X U200, 3M-ESPE) and dual cure (Rely X Ultimate, 3M-ESPE). The samples were submitted to microshear bond strength test. The failure analysis was performed. Data were submitted to ANOVA and Tukey test (α=0.05). Bond strength results ranged from 20.44 (CT+Ultimate) to 34.37 MPa (SC+U200) after 24 h and from 12.03 (CT+Ultimate) to 27.44 MPa (SC+U200) after 12 months of storage with SC statistically superior to the other treatments. Mean values of roughness varied from 0.07 (CT) to 0.85 µm (SC). The both resin luting agents showed similar results to all surface treatment groups. Silica coating provided the best treatment of the ceramic surface.  相似文献   

5.
《Ceramics International》2019,45(10):12773-12779
In a properly made porous abrasive composite, the vitrified bond should ideally cover the grains and form a continuous network of bridges, and thus part of the heat energy from the grinding process is also transferred to the vitrified bond. Until recently, most studies on the design of composite properties have focused mainly on improving their mechanical strength and wear resistance, but increasingly the very important aspect of their thermal properties is noticed. The vitrified Al2O3 composites were made from Al2O3 grains, vitrified bond of Na2OK2OAl2OB2O3SiO2 and AlN nanopowder. The increase in porosity in the tested composites is the effect of the AlN decomposition reaction. Crystalline phases were identified in both composites - α-Al2O3 and NaAl11O17, but with a different percentage share in individual composites. In composites doped with AlN nanopowder, the proportion of NaAl11O17 crystalline phase decreases, due to its high susceptibility to reduction by Al, obtained from the AlN decomposition reaction. The product of the redox reaction is also Na+ ions, which may participate in the formation of the glass phase and thus increasing the fraction of the residual glass phase. As a result of the partial reduction of NaAl11O17 phase, an increase in α-Al2O3 content is observed. A higher proportion of α-Al2O3 phase with high thermal conductivity can be a factor that increases the rate of heat removal from the work zone.  相似文献   

6.
SiC/(W, Ti)C ceramic composites with different content of (W, Ti)C solid-solution were produced by hot pressing. The effect of (W, Ti)C content on the microstructure and mechanical properties of SiC/(W, Ti)C ceramic composites has been studied. Densification rates of the SiC/(W, Ti)C ceramic composites were found to be affected by addition of (W, Ti)C. Increasing (W, Ti)C content led to increase the densification rates of the composites. The sintering temperature was lowered from 2100 °C for monolithic SiC to 1900 °C for the SiC/(W, Ti)C composites. Results show that additions of (W, Ti)C to SiC matrix resulted in improved mechanical properties compared to pure SiC ceramic. The fracture toughness and flexural strength continuously increased with increasing (W, Ti)C content up to 60 vol.%, while the hardness decreased with increasing (W, Ti)C content.  相似文献   

7.
This paper presents the effect of temperature on thermal and mechanical properties of self-consolidating concrete (SCC) and fiber reinforced SCC (FRSCC). For thermal properties specific heat, thermal conductivity, and thermal expansion were measured, whereas for mechanical properties compressive strength, tensile strength and elastic modulus were measured in the temperature range of 20–800 °C. Four SCC mixes, plain SCC, steel, polypropylene, and hybrid fiber reinforced SCC were considered in the test program. Data from mechanical property tests show that the presence of steel fibers enhances high temperature splitting tensile strength and elastic modulus of SCC. Also the thermal expansion of FRSCC is slightly higher than that of SCC in 20–1000 °C range. Data generated from these tests was utilized to develop simplified relations for expressing thermal and mechanical properties of SCC and FRSCC as a function of temperature.  相似文献   

8.
《Ceramics International》2021,47(20):28479-28486
Ceramic insulators experience thermo-mechanical fatigue and deterioration when exposed to outdoor environments. Therefore, the constituent porcelain materials must have excellent durability. In this study, the effect of the corundum content on the microstructure of porcelain was analyzed, and its thermal and mechanical properties were determined. As the corundum content increased, the coefficient of thermal expansion decreased, which mitigated the thermal stress. In addition, the role of corundum particles in reducing the residual stress and cracks generated during the sintering process was analyzed. Tensile tests on real-field insulators confirmed that excellent integrity was maintained with an increase in the corundum content.  相似文献   

9.
During the last fifty years the mechanical properties of ceramic materials have been greatly improved, their toughness and strength have been increased and the scatter of strength decreased. Adequate statistical design procedures for brittle materials exist but cracking and brittle fracture of ceramic components still occur very often.In this review the theory of brittle fracture and the underlying assumptions are critically discussed and the measurement procedures of strength are reviewed. It is shown that the strength of materials, the strength of specimens and the strength of components are often quite different properties. Three main factors are identified which – in order to avoid unexpected failure of components – have to be considered much more than in the past: (i) hidden stresses, i.e. stresses caused by thermal strain mismatch, by contact (for example in joints) and internal stresses, (ii) the quality of the component's surfaces and edges and (iii) proper handling of ceramic materials and components.It can clearly be stated that the mechanical properties of many ceramic materials are appropriate even for applications under severe loading conditions but bad or incomplete mechanical design, insufficient surface finish and mishandling are the main reasons for unexpected failure of ceramic components.  相似文献   

10.
A series of waterborne fluorinated polyurethane-acrylate (WFPUA) materials were prepared from polyester polyol (NJ-330), isophorone diisocyanate (IPDI), dimethylol propionic acid (DMPA) and different content of hexafluorobutyl acrylate (FA). The chemical structure was characterized with FT-IR, 1H and 13C NMR; and the result confirmed that the FA monomer had been introduced into the chain of the WPUA polymer. The physical properties of WFPUA dispersions, mechanical properties and thermal properties of WFPUA films were measured. When the content of FA monomer was 3.0 wt.%, the film exhibited the highest tensile strength, hardness and excellent chemical resistance. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used for characterization of cross and surface sections of the WFPUA films to verify the results. The obtained WFPUA materials have great potential application such as coatings, leather finishing, adhesives, sealants, plastic coatings and wood finishes.  相似文献   

11.
《Ceramics International》2020,46(13):21056-21063
Coprecipitation-derived, sacrificial polymeric (urethane) foam-fabricated bredigite (Ca7MgSi4O16) scaffolds were processed by individual and combined treatments of fluoride doping and poly (lactic-co-glycolic acid) (PLGA) coating and then studied in terms of structure, mechanical strength, bioactivity and cell biocompatibility in vitro. According to scanning electron microscopy and Archimedes porosimetry, the geometrical characteristics of pores for all the scaffolds are in the appropriate range for hard tissue regeneration applications. The apatite-formation ability of the samples immersed in a simulated body fluid is improved by doping for both the bare and coated conditions, based on microscopic and energy-dispersive X-ray spectroscopic analyses. Both the treatments advantageously buffer physiological pH changes imposed due to the fast bioresorption of the ceramic. Also, the biodegradable PLGA coating typically enhances the compressive strength of the scaffolds, which is critical for bone tissue engineering. In accordance with the MTT assay on osteoblast-like cells (MG-63) cultures, both the processes individually enhance the cell viability, while the highest improvement is obtained for the combined application of them. It is finally concluded that fluoride doping and PLGA coating are impressive approaches to improve the bioperformance of bredigite-based scaffolds.  相似文献   

12.
《Ceramics International》2017,43(16):13622-13634
The present work investigated alkali-activated mortars with high ceramic waste contents. Tile ceramic waste (TCW) was used as both a recycled aggregate (TCWA) and a precursor (TCWP) to obtain a binding matrix by the alkali-activation process. Mortars with natural siliceous (quartz) and calcareous (limestone) aggregates, and with other ceramic waste materials (red clay brick RCB and ceramic sanitaryware CSW waste), were also prepared for comparison purposes. Given the lower density and higher water absorption values of the ceramic aggregates, compared to the natural ones, it was necessary to adapt the preparation process of the recycled mortars by presaturating the aggregate with water before mixing with the TCWP alkali-activated paste. Aggregate type considerably determined the mechanical behaviour of the samples cured at 65 °C for 3 days. The mortars prepared with the siliceous aggregate presented poor mechanical properties, even when cured at 65 °C. The behaviour of the limestone aggregate mortars depended heavily on the applied curing temperature and, although they presented the best mechanical properties of all those cured at room temperature, their compressive strength reached a maximum when cured at 65 °C, and then decreased. The mechanical properties of the mortars prepared with TCWA progressively increased with curing time (53 MPa at 65 °C for 28 days). An optimum 50 wt% proportion was observed for the limestone/TCWA mortars (≈43 MPa, 3 days at 65 °C), whereas the mechanical properties of that prepared with siliceous particles (10 MPa) progressively increased with the TCWA content, up to 100 wt% substitution (23 MPa). Limestone particles interacted with the binding matrix, and played an interesting beneficial role at the 20 °C curing temperature, with a slight reduction when cured long term (28 days) at 65 °C. The results demonstrated a potential added value for these ceramic waste materials.  相似文献   

13.
This study investigates the effect of thermal cycles on the fracture properties of the cement-based bi-materials. Sixty eight cubes were exposed to a varied number of 24-hour thermal cycles ranging from 0 to 90 and subsequently were tested in a wedge splitting configuration. The mechanical and fracture properties of normal strength and high strength concretes are substantially improved after 30 thermal cycles, but less so after 90 thermal cycles both in isolation and when bonded to an ultra high-performance fibre-reinforced cement-based composite.  相似文献   

14.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   

15.
David L. Safranski  Ken Gall 《Polymer》2008,49(20):4446-4455
The objective of this work is to characterize and understand structure-mechanical property relationships in (meth)acrylate networks. The networks are synthesized from mono-functional (meth)acrylates with systematically varying sidegroup structure and multi-functional crosslinkers with varying mole fraction and functionality. Fundamental trends are established between the network chemical structure, crosslink density, glass transition temperature, rubbery modulus, failure strain, and toughness. The glass transition temperature of the networks ranged from −29 to 112 °C, and the rubbery modulus (Er) ranged from 2.8 to 129.5 MPa. At low crosslink density (Er < 10 MPa) network chemistry has a profound effect on network toughness. At high crosslink densities (Er > 10 MPa), network chemistry has little influence on material toughness. The characteristic ratio of the mono-functional (meth)acrylates' components is unable to predict trends in network toughness as a function of chemical structure, as has been demonstrated in thermoplastics. The cohesive energy density is a better tool for relative prediction of network mechanical properties. Due to superior mechanical properties, networks with phenyl sidegroups are further investigated to understand the effect of phenyl sidegroup structure on toughness.  相似文献   

16.
《Ceramics International》2023,49(20):33247-33254
In this study, a series of porous ceramics were prepared using different ratios of small and large size MA hollow ceramic spheres as pore-forming agents, and their thermal insulation properties were investigated. The results showed that increasing the proportion of small size hollow ceramic spheres could effectively decrease the thermal conductivity and improve the compressive strength of the porous ceramics. The optimal porous ceramic was prepared with a ratio of 10∼50 of small and large size hollow ceramic spheres, which had a thermal conductivity of 0.368 W/(m·K) at 800 °C and a compressive strength of 22.43 MPa. Microscopic analysis indicated that the enhanced thermal insulation and mechanical properties were due to the improved pore structure and the enhanced bonding strength between the ceramic spheres and the matrix. The findings provide valuable insights for the development of high-performance thermal insulation materials.  相似文献   

17.
LiAlSiO4 (abbreviated as LAS) ceramics doped with variable mass percent of Zn2SiO4 were prepared by conventional solid-state route. The effects of Zn2SiO4 on the phase evolution, microstructure, thermal expansion and mechanical properties have been fully investigated. The results show that Zn2SiO4 reacted with LAS matrix to produce Li2Al2Si3O10 and ZnAl2O4. Fine-grain ZnAl2O4 phase accumulated on the grain boundaries of the main phase, which was helpful to improve the density. Simultaneously, both of the flexure strength and Vickers hardness of the multiphase ceramics were significantly enhanced with the increasing mass percent of Zn2SiO4 for the reason of dispersion strengthening effect. In addition, when the content of Zn2SiO4 increased from 10?wt% to 22.5?wt%, the coefficient of thermal expansion (CTE) of the composite ceramics increased monotonously from ??5.24?×?10?6/K to 1.49?×?10?6/K. Typically, the LAS ceramic doping with 17.5?wt% Zn2SiO4 sintered at 1175?°C for 4?h possesses excellent properties: α?=?0.65?×?10?6/K, Hv =?5.34?GPa, σs =?102.6?MPa, which is a promising material in laser gyroscope and precision machining fields.  相似文献   

18.
《Ceramics International》2023,49(19):31734-31743
It is of great significance to enhance the mechanical properties in single grain YBCO bulk superconductors, as mechanical failure limits the suitability of these materials for high-field applications. The influence of the microstructure on the mechanical properties of YBCO bulk materials was studied in 11 partially oxygenated YBCO, 11 oxygenated YBCO, and 10 oxygenated YBCO(Ag) melt-processed bulk single grains in a statistically significant way using Brazilian testing. Surprisingly, the oxygenation cracks evolving during the tetragonal to orthorhombic phase transition do not influence the average tensile strength of YBCO bulk single grains, with compaction cracks and pores as the main microstructural flaws responsible for mechanical failure. The mechanical properties of bulk YBCO single grains even improve following oxygenation, as indicated by an increase in Weibull modulus. An addition of 10 wt% Ag2O to YBCO increases the average tensile strength and the Weibull modulus further, making the material mechanically more robust. However, an overlap in the measured tensile strengths of oxygenated YBCO and oxygenated YBCO(Ag) bulk materials reveals that not all silver-containing samples have better mechanical properties compared to oxygenated YBCO bulk samples.  相似文献   

19.
The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C3S, β-C2S, C3A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, 29Si and 27Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poor strength development is suggested to be due to the retarded development of C-S-H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC-geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC-geopolymer composite stronger than hydrated OPC paste alone.  相似文献   

20.
《Ceramics International》2019,45(9):11368-11374
The monolithic silicon carbide (SiC) aerogels were converted from catechol-formaldehyde/silicon composite (CF/SiO2) aerogels through carbothermal reduction and calcination. In the process of preparing the CF/SiO2 aerogel, a new method was proposed to produce more silicon carbide and enhanced the mechanical properties of the SiC aerogel. This method was realized by adding an alkaline silica sol as supplemental silicon source. The principle process of CF/SiO2 aerogels converting to SiC aerogels was discussed based on experiment and results analysis, while the microstructure, mechanical properties, and thermal properties of the prepared SiC aerogels were investigated. The results show that the as-synthesized SiC aerogels consist of β-SiC and a small amount of α-SiC nanocrystalline. It possessed a mesoporous structure and a low thermal conductivity 0.049 W/(m∙K), a relatively high compressive strength 1.32 MPa, and a relatively high specific surface area 162 m2/g. Due to their outstanding thermal and mechanical properties, the prepared SiC aerogels present potential applications in thermal insulation field, such as space shuttles and aerospace carrier thermal protection materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号