首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study on the performance of a single cylinder engine fueled with hydrogen/gas fule blends was carried out. The performance of engine with different fuel components under the load characteristics of the engine was analyzed. The experimental results showed that with the increase of hydrogen blending ratio, the combustion speed was accelerated, and the maximum torque and maximum pressure in the cylinder were increased; The maximum torque of blended fuel with 40% CO2 was 68.3% of that without CO2; The maximum pressure in cylinder of blended fuel with 40% H2 was 1.6 times higher than that without hydrogen; When the proportion of hydrogen was more than 30%, the torque decreased; When the mixture was blended with 30% N2, the engine torque reached the maximum at the hydrogen ratio of 15%; With the increase of hydrogen blending ratio, the emission of CO increased and the emission of HC and NOx decreased; When the hydrogen blending ratio remained unchanged, the CO emission was the largest at medium load, the HC emission was the largest at small load, and the NOx emission was the largest at high load; When the mixture was blended with 15% H2, with the increase of the proportion of nitrogen, emission of CO decreased, emissions of HC and NOx increased. The research of this paper provided an experimental basis for the design and development of gas fuel engines.  相似文献   

2.
A naturally aspirated spark ignition (SI) engine fueled by hydrogen-blended low calorific gas (LCG) was tested in both exhaust gas recirculation (EGR) and lean burn modes. The “dilution ratio” was introduced to compare their effects on engine performance and emissions under identical levels of dilution. LCG composed of 40% natural gas and 60% nitrogen was used as a main fuel, and hydrogen was blended with the LCG in volumes ranging from 0 to 20%. The engine test results demonstrated that EGR operations at stoichiometry showed a narrower dilution range, inferior combustion characteristics, lower brake thermal efficiency, faster nitrogen oxides (NOx) suppression, and higher total hydrocarbon (THC) emissions for all hydrogen blending rates compared to lean burn. These trends were mainly due to the increased oxygen deficiency as a result of using EGR in LCG/air mixtures. Hydrogen enrichment of the LCG improved combustion stability and reduced THC emissions while increasing NOx. In terms of efficiency, hydrogen addition induced a competition between combustion enhancement and increases in the cooling loss, so that the peak thermal efficiency occurred at 10% H2 with excess air ratio of 1.5. The engine test results also indicated that a close-to-linear NOx-efficiency relationship occurred for all hydrogen blending rates in both operations as long as stable combustion was achieved. NOx versus combustion duration analysis showed that adding H2 reduced combustion duration while maintaining the same level of NOx. The methane fraction contained in the THC emissions decreased slightly with an increase in hydrogen enrichment at low EGR or excess air dilution ratios, but this tendency was diminished at higher dilution ratios because of the combined dilution effects from the inert gas in the LCG and the diluents (EGR or excess air).  相似文献   

3.
Blending hydrogen into the natural gas (NG) network could provide an efficient pathway for decarbonising the NG system through power-to-gas technologies. However, due to the presence of potentially multiple and intermittent hydrogen injection sources, the gas blended throughout the network would be neither homogenous nor at a constant mole fraction. The above features are not captured by the current transient modelling techniques. To bridge this gap, this work presents a transient analysis model that enables the tracking of gas compositions and particularly hydrogen fractions in real-world meshed networks with multiple NG sources, non-pipe elements, and multiple and intermittent hydrogen injection sources. A time-varying compressibility factor is also introduced to account for the variable gas composition across the network. Moreover, numerical techniques are adopted for improving the stability of the Eulerian numerical calculation, and a specific grid size threshold Δxmax is introduced for selecting the stable mesh grid to alleviate convection-dominated oscillations caused by the hydrogen fraction tracking. The case study based on the well-known 20-node Belgian gas network validates the effectiveness of the method in solving practical-scale problems, whereas the unsuitability of steady-state models is also discussed and highlighted. The results clearly demonstrate the effect and importance of introducing variable compressibility factor, hydrogen fraction tracking, and variable gas demand. The impacts of hydrogen blending on pressures and linepack of the network are further investigated.  相似文献   

4.
There is rising interest globally in the use of hydrogen for the provision of electricity or heat to industry, transport, and other applications in low-carbon energy systems. While there is attention to build out dedicated hydrogen infrastructure in the long-term, blending hydrogen into the existing natural gas pipeline network is also thought to be a promising strategy for incorporating hydrogen in the near-term. However, hydrogen injection into the existing gas grid poses additional challenges and considerations related to the ability of current gas infrastructure to operate with blended hydrogen levels. This review paper focuses on analyzing the current understanding of how much hydrogen can be integrated into the gas grid from an operational perspective and identifies areas where more research is needed. The review discusses the technical limits in hydrogen blending for both transmission and distribution networks; facilities in both systems are analyzed with respect to critical operational parameters, such as decrease in energy density, increased flow speed and pressure losses. Safety related challenges such as, embrittlement, leakage and combustion are also discussed. The review also summarizes current regulatory limits to hydrogen blending in different countries, including ongoing or proposed pilot hydrogen blending projects.  相似文献   

5.
There is no common standard for blended hydrogen use in the natural gas grid; hydrogen content is generally based on delivery systems and end-use applications. The need for a quantitative evaluation of hydrogen-natural gas mixtures related to the mechanical performance of materials is becoming increasingly evident to obtain long lifetime, safe, and reliable pipeline structures. This study attempts to provide experimental data on the effect of H2 concentration in a methane/hydrogen (CH4/H2) gas mixture used in hydrogen transportation. The mechanical performance under various blended hydrogen concentrations was compared for three pipeline steels, API X42, X65, and X70. X65 exhibited the highest risk of hydrogen-assisted crack initiation in the CH4/H2 gas mixture in which brittle fractures were observed even at 1% H2. The X42 and X70 samples exhibited a significant change in their fracture mechanism in a 30% H2 gas mixture condition; however, their ductility remained unchanged. There was an insignificant difference in the hydrogen embrittlement indices of the three steels under 10 MPa of hydrogen gas. The coexistence of delamination along with the ferrite/pearlite interface, heterogeneous deformation in the radial direction, and abundance of nonmetallic MnS inclusions in the X65 sample may induce a high stress triaxiality at the gauge length at the beginning of the slow strain rate tensile process, thereby facilitating efficient hydrogen diffusion.  相似文献   

6.
The oxidation of laminar premixed natural gas flames has been studied experimentally and computationally with variable mole fractions of hydrogen (0, 20, and 60%) present in the fuel mixture. All flames were operated at low pressure (0.079 atm) and at variable overall equivalence ratios (0.74<?<1.0) with constant cold gas velocity. At the same global equivalence ratio, there is no significant effect of the replacement of natural gas by 20% of H2. The small differences recorded for the intermediate species and combustion products are directly due to the decrease of the amount of initial carbon. However, in 60% H2 flame, the reduction of hydrocarbon species is due both to kinetic effects and to the decrease of initial carbon mole fraction. The investigation of natural gas and natural gas/hydrogen flames at similar C/O enabled identification of the real effects of hydrogen. It was shown that the presence of hydrogen under lean conditions activated the H-abstraction reactions with H atoms rather than OH and O, as is customary in rich flames of neat hydrocarbons. It was also demonstrated that the presence of H2 favors CO formation.  相似文献   

7.
To understand the combustion performance of using hydrogen/methane blended fuels for a micro gas turbine that was originally designed as a natural gas fueled engine, the combustion characteristics of a can combustor has been modeled and the effects of hydrogen addition were investigated. The simulations were performed with three-dimensional compressible k-ε turbulent flow model and presumed probability density function for chemical reaction. The combustion and emission characteristics with a variable volumetric fraction of hydrogen from 0% to 90% were studied. As hydrogen is substituted for methane at a fixed fuel injection velocity, the flame temperatures become higher, but lower fuel flow rate and heat input at higher hydrogen substitution percentages cause a power shortage. To apply the blended fuels at a constant fuel flow rate, the flame temperatures are increased with increasing hydrogen percentages. This will benefit the performance of gas turbine, but the cooling and the NOx emissions are the primary concerns. While fixing a certain heat input to the engine with blended fuels, wider but shorter flames at higher hydrogen percentages are found, but the substantial increase of CO emission indicates a decrease in combustion efficiency. Further modifications including fuel injection and cooling strategies are needed for the micro gas turbine engine with hydrogen/methane blended fuel as an alternative.  相似文献   

8.
The self-acceleration characteristics of cellular flame of low calorific value (LCV) gas in a constant volume combustion bomb were studied, the propagation process of spherical flame with different hydrogen (H2) addition and initial pressure was analyzed, and the flame radius versus time was also discussed. The experimental results show that the self-acceleration of the cellular flame of LCV gas blended with hydrogen appears at high pressure, high hydrogen ratio and lean burn. The acceleration index increases with the increase of hydrogen addition and the reduction of equivalence ratio, and increases with the increase of initial pressure, but the acceleration index does not infinitely increase with the increase of initial pressure. With the increase of the hydrogen addition and the reduction of the equivalence ratio, the critical radius of the cellular flame decreases, which is shown that increase of the hydrogen addition and the lean burn will make appearance of cellular flame in advance. When the ratio of hydrogen is less than 60%, the critical Peclet number decreases with increase of hydrogen addition, when the ratio of hydrogen continues to increase to 80%, it increases slightly. The research in this paper provides an experimental basis for the in-depth study of engine combustion of LCV gas blended with hydrogen.  相似文献   

9.
为了解贫预混燃烧室天然气掺氢加湿燃烧时的性能变化和容许加湿范围,解决氢混燃气轮机NOx排放超标问题,以某燃气轮机燃烧室为研究对象,数值研究了掺氢比和加湿比对燃烧性能及污染物排放特性的影响。结果表明:燃料无加湿条件下,燃烧室出口CO和CO2排放值随着掺氢比的增加而减小,较高燃烧温度将导致热力型NOx排放值增加,掺氢比达到0.2以上时,NOx排放已超出环保限值;燃料加湿条件下,随着加湿程度增加,燃气出口平均流速及水蒸气组分含量均增加,燃烧筒内全局温度、CO2和NOx排放值均降低,CO排放值先降低后增加;掺氢天然气加湿可实现低氮燃烧,考虑到低掺氢工况燃气轮机功率输出效能和高掺氢工况燃烧性能恶化问题,水蒸气加湿量不宜过多,当掺氢比为0.3时,推荐燃料加湿比为0.463。  相似文献   

10.
A key challenge in the transition towards using hydrogen as an alternative carbon-free fuel is the reduced thermal radiation due to the absence of soot. A novel solution to this may be doping with highly sooting bio-oils. This study investigates the efficacy of toluene as a prevapourised dopant in turbulent pure hydrogen and blended hydrogen/natural gas flames as a means of improving soot loading and radiant heat transfer. All flames are stabilised on bluff-body burners to emulate the recirculation component of many industrial combustors. Total heat flux and illuminance increase non-linearly with toluene concentration for fuel blends and bluff-body diameters. By reducing the bluff-body diameter from 64 mm to 50 mm, a 20/80 (vol%) H2/natural gas mixture produces a more radiative flame than a 10/90H2/natural gas mixture in the smaller bluff-body. Opposed-flow flame simulations of soot precursors indicate that as strain rate increases, although overall soot precursor concentration decreases, a 20 vol% hydrogen mixture will produce more soot than a 10 vol% mixture. This suggests the addition of hydrogen up to 20 vol% may be beneficial for soot production in high strain environments.  相似文献   

11.
One alternative for the storage and transport of hydrogen is blending a low amount of hydrogen (up to 15 or 20%) into existing natural gas grids. When demanded, hydrogen can be then separated, close to the end users using membranes. In this work, composite alumina carbon molecular sieves membranes (Al-CMSM) supported on tubular porous alumina have been prepared and characterized. Single gas permeation studies showed that the H2/CH4 separation properties at 30 °C are well above the Robeson limit of polymeric membranes. H2 permeation studies of the H2–CH4 mixture gases, containing 5–20% of H2 show that the H2 purity depends on the H2 content in the feed and the operating temperature. In the best scenario investigated in this work, for samples containing 10% of H2 with an inlet pressure of 7.5 bar and permeated pressure of 0.01 bar at 30 °C, the H2 purity obtained was 99.4%.  相似文献   

12.
The injection of green hydrogen into the natural gas grid is a way to decarbonize the gas sector and build an economic transport route for the large-scale delivery of hydrogen. The suitability of the natural gas infrastructure for this purpose depends on the impact that hydrogen may have on the correct operation of its components and understanding the new flow conditions in the system is essential for this aim. Computational studies can anticipate the expected environment in the pipe system, assessing the readiness of the system. However, the experience on this topic is not extensive enough and deeper understanding is necessary. Here we show a CFD study to simulate the transport of H2/NG blends in a gas setup with the main characteristics of injection sites and gas pipelines representatives of the transmission gas network. This setup considers a blending station, the pumping and injection procedure, and different pipelines geometries to predict the behavior of various mixtures of H2/NG. It can be seen how (1) a good mixing is achieved in the blending station after a pipe length equivalent to 20–30 diameters is reached; (2) pumping gas by a piston type compressor shows pulsations in the flow regardless the composition of the blend that can be damped implementing mitigation measurements; and (3) asymmetries in the flow are found when the direction of the fluid changes after section reduction, but 20 diameters downstream of the reduction the flow is fully developed.  相似文献   

13.
It appears to be the most economical means of transporting large quantities of hydrogen over great distances by the existing natural gas pipeline network. However, the leakage and diffusion behavior of urban hydrogen blended natural gas and the evolution law of explosion characteristics are still unclear. In this work, a Computational Fluid Dynamics three-dimensional simulation model of semi-confined space in urban streets is developed to study the diffusion process and explosion characteristics of hydrogen-blended natural gas. The influence mechanism of hydrogen blending ratio and ambient wind speed on the consequences of explosion accident is analyzed. And the dangerous area with different environmental wind effects is determined through comparative analysis based on the most dangerous scenarios. Results indicate that the traffic flow changes the diffusion path of the jet, the flammable gas cloud forms a complex profile in many obstacles, high congestion level lead to more serious explosion accidents. Wind effect keeps the flammable gas cloud near the vehicle flow, the narrow gaps between the vehicles aggravate the expansion of the flammable gas cloud. When the wind direction is consistent with the leakage direction, hydrogen blended natural gas is gathered in the recirculation zone due to the vortex effect, which results in more serious accident consequences. With the increase in hydrogen blending ratio, the higher content of H and OH in the gas mixture significantly increases the premixed burning rate, the maximum overpressure rises rapidly when the hydrogen blend level increases beyond 40%. The results can provide a basis for construction safety design, risk assessment of leakage and explosion hazards, and emergency response in hydrogen blended natural gas distribution systems.  相似文献   

14.
Adding renewable hydrogen into natural gas pipeline would bring down the net gas C/H ratio and hence the CO2 emissions. Also, it can help stabilize electric grids and maximize the renewable output of intermittent energy sources (solar, wind, etc.) via power-to-gas pathway. However, hydrogen differs in its chemical and physical characteristics (flammability range, flame speed, density, adiabatic flame temperature, energy content, etc.) than natural gas. Before transitioning to hydrogen admixing into pipelines, a general agreement on maximum hydrogen tolerance pertaining to end use (residential appliances) operation needs to be established. Focusing on the combustion performance of two representative models of storage water heaters (conventional and low-NOx) in California, this research addresses how much H2 content in natural gas can be tolerated without loss of critical performance parameters with reliable operation. Characteristics like flashback, ignition delay, flame structure, and emissions (NOx, NO, CO, CO2, UHC, and NH3) at different concentrations of H2 admixed with natural gas is investigated. The present study shows <10% H2 can be added to natural gas without any loss of efficiency for both the low-NOx and conventional storage water heater. This work also aims to provide a brief review of burner configuration and emission regulation pertaining to water heating owing to a gap in the literature.  相似文献   

15.
An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted. The results show that ignition timing has a significant influence on engine performance, combustion and emissions. The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines. The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies. The maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing. However, these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing. The exhaust HC emission decreases while the exhaust CO2 concentration increases with the advancing of ignition timing. In the lean combustion condition, the exhaust CO does not vary much with ignition timing. At the same ignition timing, the exhaust HC decreases with hydrogen addition while the exhaust CO and CO2 do not vary much with hydrogen addition. The exhaust NOx increases with the advancing of ignition timing and the behavior tends to be more obvious at large ignition advance angle. The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%. __________ Translated from Transactions of CSICE, 2006, 24(5): 394–401 [译自:内燃机学报]  相似文献   

16.
In this paper the effects of hydrogen on the transport of natural gas-hydrogen mixture in a high-pressure natural gas transmission system are investigated in detail. Our research focuses on the decrease in transferable energy content under identical operating conditions as hydrogen is blended in the gas transmission network. Based on the extensive literature review the outstanding challenges and key questions of using hydrogen in the natural gas system are introduced. In our research the transmissible energy factor - TEF - is defined that quantifies the relative energy capacity of the pipeline caused by hydrogen blending. A new equation is proposed in this paper to find the value of TEF at specific pressure and temperature conditions for different hydrogen concentrations. This practical equation helps the natural gas system operators in the decision-making process when hydrogen emerges in the gas transmission system. In this paper the change of the compression power requirement, which increases significantly with hydrogen blending, is investigated in detail.  相似文献   

17.
In the present article, an axisymmetric two-dimensional (2D) computational fluid dynamic (CFD) model was adapted to predict the efficiency of the silica membrane for hydrogen (H2) separation as a renewable energy source. In this model, continuum flows on the shell and tube sides are defined through the Navier-Stokes and transport of chemical species equations. Components transfer through the silica membrane is characterized by introducing source-sink terms based on activating transport mechanisms. To validate the presented model results related to H2 molar fraction at the retentate and permeate sides were compared with experimental data. The CFD model prognosticates the local information of velocity distribution and the molar fraction of the components. Finally, considering the effects of temperature, pressure difference, gas flow rate, and inner radius of the module on the H2 molar fraction, silica membrane performance was investigated. Moreover, it has been shown that with increasing working temperature from 323 to 473 K, H2 molar fraction at the shell side decreases from 59% to 28.4%, and in the tube side, it rises from 78.8% to 82.8%. On the shell side, it could be seen that H2 permeates better for a low gas flow rate. At the tube side, this parameter has a positive effect on H2 purification. The result of the impact of pressure differences at shell and tube sides was used to indicate the variation in the H2 molar fraction. An increase in pressure difference causes a decrease of H2 molar fraction at the tube side. At the shell side, H2 molar fraction would be decreased with an addition in pressure difference from 1 to 3 bar. Any further pressure difference rise from 3 to 4 bar, make this trend ascending. Likewise, at the shell and tube sides, by enhancing the inner radius of the module, the molar fraction of H2 increases.  相似文献   

18.
Hydrogen production from renewable biomass is of great interests. Co-steam-reforming of biomass and crude glycerin with the ratio of 1:1(w/w) was investigated in a fixed-bed gasifier aiming at improving biomass to hydrogen conversion, focusing on the effects of temperature, pressure, H2O/C ratio and Ca/C ratio on producing gas composition. The results show that high temperature and low pressure favors hydrogen production. With temperature increasing from 650 to 825 °C, H2 yield shows a linear increase from 0.053 mol/kg to 0.059 mol/kg. Both H2 yield and its mole fraction increase obviously with the increasing H2O/C ratio. No influence on gas production is found for Ca/C ratio > 1. The study reveals the optimum condition for producing hydrogen is: temperature of 700-750 °C, pressure of 0.1 MPa, H2O/C ratio of 1.7-2.25 and Ca/C ratio of 1. Our experimental analysis shows co-steam-reforming of biomass and crude glycerin for hydrogen production is feasible and promising.  相似文献   

19.
In order to comply to the ambitious targets of European Hydrogen Strategy, Member States will strongly encourage the deployment of Power-to-Gas (PtG) technologies. A significant fraction of produced green hydrogen will be injected into the existing natural gas networks, and the end-users will be served by Hydrogen enriched Natural Gas blends (H2NG). The aim of this paper is to analyse the H2NG effects on technical, economic and environmental parameters of hybrid energy systems for building refurbishment. Three hybrid energy systems for the existing plants replacement have been proposed, dynamically simulated and compared with the separate generation. Fuel supply has been simulated by varying the H2 volumetric fraction in a range between 0 and 20%vol. The H2NG blend employment will allow greater primary energy savings and avoided emissions. However, if the levelized cost of hydrogen (LCOH) due to electrolysis does not decrease, those benefits will be offset by a lower economic competitiveness.  相似文献   

20.
The primary objective of this work is to study the blending of natural gas in equimolar proportions with three high hydrogen content syngases in a radiant porous media burner. We examined the effects of the composition of the syngases, the fuel-to-air ratio and the thermal input on the flame stability, the radiation efficiency and the pollutant emissions (CO and NOx). In this study, we emulated the syngases with H2–CO mixtures, in which the H2 to CO ratio was varied between 1.5 and 3. Additionally, pure natural gas was also used as a base fuel for comparison. The thermal inputs evaluated in this study correspond to two values (300 and 500 kW/m2) found in practical applications. The results indicate that the thermal input and the fuel-to-air ratio significantly influenced the temperature profile in the radiant porous media burner, the radiation efficiency, and the pollutant emissions. On the other hand, contrary to what was observed in other studies for lower hydrogen concentrations, we found that substituting natural gas with high hydrogen content syngases (up to 50%) affected the flame stability limits. Significant differences were also observed for the radiation efficiencies and pollutant emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号