共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《软件》2017,(7):70-78
在现有文献统计下个性化推荐算法可以分为如下三类~([1,2]):基于内容的推荐(Content-based Recommendation)~([3,4])、基于协同过滤的推荐(Collaborative Filtering based Recommendation)~([5-7]),以及混合型推荐系统(Hybrid Recommendation)~([8-10])。其中,基于协同过滤的推荐因其对专家知识依赖度低以及可以利用群体智慧等特点,得到了最为深入也最为广泛的研究,它又可以被分为多个子类别,主要包括基于用户的协同过滤(User-based CF)~([11]),基于物品的协同过滤(Item-based CF)~([12]),以及基于模型的协同过滤(Model-based CF)~([6]),等。其中基于模型的推荐是一类方法的统称,它指利用系统已有的数据和用户历史行为,学习和构建一个模型,进而利用该模型进行用户偏好建模、预测与个性化推荐,根据具体应用场景和可用数据的不同,这里的模型可以是常用的奇异值分解等矩阵分解模型~([13]),也可以是主题模型、人工神经网络、概率图模型、组合优化甚至深度学习等机器学习模型~([1])。在下面的部分,我们将在如上几个方面对个性化推荐系统的研究现状进行具体的介绍。 相似文献
3.
应用了基于标签系统、协同过滤的推荐算法,设计了一种面向创新成果的个性化推荐系统模型,并进行了实验分析,评价了该模型的性能.该方案的应用,可以促进创新成果的推广宣传,提升企业创新管理效能. 相似文献
4.
研究如何充分利用海量用户浏览行为数据,构建更加精确的推荐算法和模型,以提高推荐系统性能,是目前个性化推荐领域研究的热点.针对这些问题,首先对用户的浏览行为进行了简要概括表述,给出了基于浏览行为推荐系统的总体框架,回顾总结了基于用户浏览行为的推荐系统的发展历程.对其关键技术和单一浏览行为量化方法与混合浏览行为量化方法进行总结、对比和分析.最后讨论了结合多源异构数据的浏览行为推荐的最新成果,总结了该领域未来研究难点和发展趋势. 相似文献
5.
随着Web服务的广泛使用和互联网上服务数量的增加,如何向用户提供最佳的服务选择列表成为了新的挑战.Web服务个性化推荐实现了由被动接受用户请求向主动感知用户需求的转变.个性化的Web服务推荐方法已经成为Web服务发现和选择的有效辅助手段.Web服务的个性化推荐技术也成为了近年来服务计算领域的研究热点.对当前Web服务个性化推荐的文献进行了归类分析,总结了当前Web服务个性化推荐的技术现状、研究方法和实验的数据集,列出了未来Web服务个性化推荐研究热点和挑战. 相似文献
6.
7.
大数据时代,各类影视资源纷纷涌现,信息过载问题在影视行业愈发凸显,有效的电影推荐算法是解决这个问题的关键.本文首先总结了电影推荐的主流推荐算法,主要有协同过滤、基于内容的推荐和混合推荐三类算法,然后比较分析了几种推荐算法的优缺点.最后,针对推荐算法的发展方向,又对基于上下文的推荐算法进行了简单的介绍. 相似文献
9.
针对现有图书馆推荐系统存在的推荐准确率低、推荐效率差的问题,提出基于多标签分类的智慧图书馆个性化推荐系统。本研究先对推荐系统整体结构进行分析,阐述了数据库及主要功能模块的设计,然后以此为基础开展软件设计,基于多标签分类算法完成图书馆资源分类,然后采用协同过滤算法完成图书馆资源个性化推荐。最后采用实验证明所提系统的实用性。实验结果表明:所提系统推荐准确率高达95%,且其推荐效率较高,优于对比系统,具有较大的研究价值。 相似文献
10.
11.
新闻每时每刻都在发生,阅读新闻已经成为很多人的习惯。新闻媒体众多,网络媒体凭其迅捷性和便利性成为很多人的首选。网络新闻众多导致新闻过载,这就迫切需要个性化的新闻推荐系统,帮助用户快速地找到感兴趣的新闻。伴随着新闻大数据的产生和移动互联网的蓬勃发展,个性化新闻推荐迎来了新的机遇和挑战。首先介绍了个性化新闻推荐的挑战性;然后提出了个性化新闻推荐系统的基本框架,该框架包含新闻建模、用户建模、推荐引擎和用户接口四个模块,并以该框架为基础,分别综述了每个模块的研究进展,列举了现有的个性化新闻推荐系统中四个模块所采用的技术;最后总结了常用数据集、实验方法、评测指标和未来的研究方向。 相似文献
12.
通过调查发现,E-learning支持系统无法有效地向学习者个性化地推荐学习资源。为了进一步提高推荐系统的性能,本文尝试将协同过滤推荐技术引入学习资源的个性化推荐研究中。协同过滤推荐技术是一种应用最为广泛的个性化推荐技术,然而其面临着冷启动、数据稀疏性问题、规模可扩展性等问题。本文通过介绍协同过滤推荐技术的工作原理、实现方法及存在问题,提出了一个优化的基于协同过滤技术的学习资源个性化推荐系统的理论模型,重点讨论了隐式评分机制和算法的实现,以提升推荐系统的实时响应和推荐精度。 相似文献
13.
互联网的出现和发展给用户带来大量信息数据,造成信息超载(Information Overload)现象,解决信息超载的一种有效办法是推荐系统。推荐系统现已广泛应用于多种领域,其中最典型的为电子商务领域。同时,学术界对推荐系统的研究热度也越来越高,逐步形成了一门独立的学科。本文在借鉴和分析前人研究成果的基础上,进一步阐释了个性化推荐技术的发展轨迹、现状及存在的挑战,重点研究个性化推荐中的数据稀疏性问题及相关的解决方法,为个性化推荐的进一步发展提供理论支持。 相似文献
14.
协同过滤技术是推荐系统中应用最为广泛的算法,其面临着数据稀疏性问题、冷启动、规模可扩展性等问题。工作体现在两点:一是在基于项的协同过滤模型中,改进了项间的相似度计算方法,相比调整余弦方法仅考虑一个要素,包含了三个要素:两项的具有共同用户的评分、共同评分用户数量、非共同评分用户数量;二是组合基于用户、基于项和基于奇异值分解的协同过滤推荐,通过多模型组合提高推荐性能。实验结果表明在基于项过滤中MAE指标上提高了4.30%。进一步,加权的组合多种模型方法比基于项方法提高了1.26%。 相似文献
15.
《模式识别与人工智能》2014,(8)
协同过滤是推荐系统中广泛使用的推荐技术,研究人员对如何完善协同过滤推荐技术开展大量工作,但是相应的研究总结较少.文中对协同过滤的相关研究进行全面回顾,首先阐述协同过滤的内涵及其存在的主要问题,包括稀疏性、多内容及可扩展性,然后详细介绍国内外学者针对以上问题的解决方案,最后指出协同过滤下一步的研究重点.文中介绍一个相对完整的协同过滤知识框架,对理清协同过滤的研究脉络,为后续研究提供参考,推进个性化信息服务的发展具有一定意义. 相似文献
16.
随着互联网的飞速发展所带来的“信息过载”问题使准确的新闻推荐技术变得越来越重要。提出基于兴趣标签的个性化新闻推荐系统,利用Hadoop大数据平台,采用基于项的协同过滤算法,通过收集用户的浏览记录和兴趣标签,挖掘用户的主题兴趣,建立用户的兴趣模型,提高个性化推荐系统的准确性和可扩展性,具有良好的推荐效果。 相似文献
17.
杨丹 《数字社区&智能家居》2013,(27):6067-6068,6078
为了解决信息过载的问题,我们可以通过在用户和产品之间建立二元关系的方法,利用已经拥有的比较相似的关系或者选择过程,挖掘出各用户可能感兴趣的对像。目前解决信息过载问题最有效的工具就是个性化推荐,该文利用不同的推荐算法,简单介绍了协同过滤系统,基于内容的推荐系统,基于用户—产品二部图网络结构的推荐系统,混合推荐系统。并分析这些推荐系统的特点以及存在的缺陷,帮助读者了解这个研究领域。 相似文献
18.
19.