首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   

2.
Development of an inexpensive electrocatalyst for hydrogen evolution (HER) and oxygen evolution reactions (OER) receives much traction recently. Herein, we report a facile one-pot ethyleneglycol (EG) mediated solvothermal synthesis of orthorhombic Co2P with particle size ~20–30 nm as an efficient HER and OER catalysts. Synthesis parameters like various solvents, temperatures, precursors ratios, and reaction time influences the formation of phase pure Co2P. Investigation of Co2P as an electrocatalyst for HER in acidic (0.5 M H2SO4) and alkaline medium (1.0 M KOH), furnishes low overpotential of 178 mV and 190 mV, respectively to achieve a 10 mA cm?2 current density with a long term stability and durability. As an OER catalyst in 1.0 M KOH, Co2P shows an overpotential of 364 mV at 10 mA cm?2 current density. Investigation of Co2P NP by XPS analysis after OER stability test under alkaline medium confirms the formation of amorphous cobalt oxyhydroxide (CoOOH) as an intermediate during OER process.  相似文献   

3.
The high-efficiency non-precious metal catalysts for oxygen evolution (OER) and hydrogen evolution (HER) are of great significance to the development of renewable energy technologies. Herein, a multiple active sites CoNi-MOFs-DBD electrocatalyst modified by low temperature plasma (DBD) was successfully synthesized by converting metal hydroxyfluoride on nickel foam into a well-arranged MOFs array using vapor deposition. The as-prepared CoNi-MOFs-DBD electrode showed better HER and OER catalytic activity, super hydrophilicity, and excellent stability. In an alkaline medium, the overpotential of HER is 203 mV at 10 mA cm?2 and that of OER is 168 mV at 40 mA cm?2. When CoNi-MOFs-DBD was used as a bifunctional electrocatalyst for overall water splitting in a two-electrode system, a current density of 10 mA cm?2 can be achieved at a low voltage of 1.42 V, which shows great potential in electrocatalytic water splitting.  相似文献   

4.
Developing non-noble metal catalysts with excellent electrocatalytic performance and stability is of great significance to hydrogen production by water electrolysis, but there are still problems of low activity, complex preparation and high cost. Herein, we fabricated a novel Ni3S2/Ni(OH)2 dual-functional electrocatalyst by a one-step fast electrodeposition on nickel foam (NF). While maintaining the electrocatalytic performance of Ni3S2, the existence of heterostructure and Ni(OH)2 co-catalyst function greatly improves the overall water splitting performance of Ni3S2/Ni(OH)2–NF. Hence, It shows a low overpotential of 66 mV at 10 mA cm?2 for HER and 249 mV at 20 mA cm?2 for OER. The dual-functional electrocatalyst needs only 1.58 V at 20 mA cm?2 when assembled two-electrode electrolytic cell. Impressively, the electrocatalyst also shows outstanding catalytic stability for about 800 h when 20 and 50 mA cm?2 constant current was applied, respectively which demonstrates a potential electrocatalyst for overall water splitting.  相似文献   

5.
Fabrication of an electrocatalyst with remarkable electrocatalytic activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is important for the production of hydrogen energy. In this study, Ni–Co–W alloy urchin-like nanostructures were fabricated by binder-free and cost-effective electrochemical deposition method at different applied current densities and HER and OER electrocatalytic activity was studied. The results of this study showed that the microstructure and morphology are strongly influenced by the electrochemical deposition parameters and the best electrocatalytic properties are obtained at the electrode created at the 20 mA.cm−2applied current density. The optimum electrode requires −66 mV and 264 mV, respectively, for OER and HER reactions for delivering the 10 mA cm−2 current density. The optimum electrode also showed negligible potential change after 10 h electrolysis at 100 mA cm−2, which means remarkable electrocatalytic stability. In addition, when this electrode used as a for full water splitting, it required only 1.58 V to create a current density of 10 mA cm−2. Such excellent electrocatalytic activity and stability can be related to the high electrochemical active surface area, being binder-free, high intrinsic electrocatalytic activity and hydrophilicity. This study introduces a simple and cost-effective method for fabricating of effective electrodes with high electrocatalytic activity.  相似文献   

6.
The development of cost-effective, highly efficient and stable electrocatalysts for alkaline water electrolysis at a large current density has attracted considerable attention. Herein, we reported a one-dimensional (1D) porous Mo2C/Mo2N heterostructured electrocatalyst on carbon cloth as robust electrode for large current hydrogen evolution reaction (HER). The MoO3 nanobelt arrays and urea were used as the metal and non-metal sources to fabricate the electrocatalyst by one-step thermal reaction. Due to the in-situ formed abundant high active interfaces and porous structure, the Mo2C/Mo2N electrocatalyst shows enhanced HER activity and kinetics, as exemplified by low overpotentials of 54, 73, and 96 mV at a current density of 10 mA cm?2 and small Tafel slopes of 48, 59 and 60 mV dec?1 in alkaline, neutral and acid media, respectively. Furthermore, the optimal Mo2C/Mo2N catalyst only requires a low overpotential of 290 mV to reach a large current density of 500 mA cm?2 in alkaline media, which is superior to commercial Pt/C catalyst (368 mV) and better than those of recently reported Mo-based electrocatalysts. This work paves a facile strategy to construct highly efficient and low-cost electrocatalyst for water splitting, which could be extended to fabricate other heterostructured electrocatalyst for electrocatalysis and energy conversion.  相似文献   

7.
The development of inexpensive electrocatalysts with excellent electrocatalytic activity for the hydrogen and oxygen evolution reactions (HER and OER, respectively) has been challenging. In this study, we synthesized cobalt molybdenum ruthenium oxide with porous, loosely-assembled nanoplate morphology. The CoMoRu0.25Ox/NF electrocatalyst exhibited the highest electrocatalytic activity, requiring overpotentials of 230 and 78 mV for the OER and HER, respectively, to attain a current density of 10 mA cm?2; moreover, its long-term stability was outstanding. The electrocatalyst required a cell voltage of only 1.51 V for overall water splitting in an alkaline medium, which was lower than that required by many CoMo-based catalysts.  相似文献   

8.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   

9.
Hydrogen is considered as a viable alternative to traditional fossil fuels. Hydrogen evolution reaction (HER) by electrochemical water splitting is the most reliable and effective way for the sustainable production of pure hydrogen. The design and synthesis of highly active and stable non-noble-metal-based electrocatalysts is the core of the large-scale application of this technology. Herein, peony petal-like CoMnP/NF nanomaterials growing on nickel foam (NF) are prepared via facile hydrothermal and phosphorization methods. The results showed that CoMnP/NF had excellent HER activity in acidic and alkaline media. In 0.5 M H2SO4, CoMnP/NF only needed 66.6 mV overpotential to drive the current density of 10 mA cm?2, with a Tafel slope of 38.8 mV dec?1. In addition, a particularly low overpotential of 53.9 mV and Tafel slope of 63 mV dec?1 are required to achieve the same current density in the 1 M KOH electrolyte. Meanwhile, the electrocatalyst showed good stability after 1000 cyclic voltammetry tests and 12 h I-T tests. In the 1 M KOH electrolyte, the current density of 10 mA cm?2 achieved with only 1.70 V battery voltage, and the electrocatalyst showed excellent stability. The performance of CoMnP/NF can be attributed to the synergistic effect between Co and Mn atoms and the high electrochemical surface area (ECSA). This study provides a valuable strategy for the synthesis of non-precious metals and high-performance catalytic materials.  相似文献   

10.
Tungsten carbides (W2C and WC) materials, as promising non-precious electrocatalysts, possess highly efficient activity for HER. Herein, N-doped graphene supported tungsten carbide (N–W2C/WC) nanocomposite is synthesized by spray drying process followed with a two-step pyrolysis treatment, which exhibits a remarkable hydrogen evolution reaction (HER) activity and excellent stability in acidic solution and alkaline solution. N–W2C/WC displays low overpotentials of 166 mV and 125 mV to achieve a current density of 10 mA cm?2 and small Tafel slopes of 60.97 and 62.66 mV dec?1 in 0.5 M H2SO4 and 1.0 M KOH, respectively. After 1000 cycles, the electrocatalytic activity of N–W2C/WC is almost no change in acidic media but slightly decreases in alkaline media. This work might provide a new way to explore high comprehensive performance tungsten-based electrocatalyst for HER.  相似文献   

11.
In the present study, a novel electrocatalyst with excellent catalytic performance based on PdCu bimetallic nanoparticles (NPs) supported on ordered mesoporous silica and multi-walled carbon nanotubes (PdCu NPs/SBA-15-MWCNT) was prepared for electrochemical hydrogen evolution reaction (HER). For this purpose, low-cost mesoporous SBA-15 was synthesized using silica extracted from Stem Sweep Ash (SSA) as an economically attractive silica source. Mesoporous SBA-15 with unparalleled porous structure is a stable support for PdCu bimetallic NPs which prevents the accumulation of PdCu bimetallic NPs and improves its efficiency in the catalytic process. The main advantage of this strategy is low loading of bimetallic catalyst with high catalytic activity. The presence of both mesoporous SBA-15 and MWCNTs materials in PdCu/SBA15-MWCNTs/carbon paste electrode (CPE) increases the metallic active sites and the electrical conductivity of electrode which provides great performance for HER. PdCu/SBA15-MWCNTs-CPE provided small Tafel slope (45 mV dec?1), low onset potential (~-150 mV), high current density (?165.24 mA cm?2at -360 mV) and exchange current density (2.51 mA cm?2) with great durability for HER in H2SO4 solution. Analysis of kinetic data suggests that the electrocatalyst controls HER by the Volmer-Heyrovsky mechanism. In addition, studies showed that the presence of sodium dodecyl sulfate (SDS) in electrolyte can decrease the potential of HER and increase the current density.  相似文献   

12.
In order to solve the problem of large overpotential in water electrolysis for hydrogen production, transition metal sulfides are promising bifunctional electrocatalysts for hydrogen evolution reaction/oxygen evolution reaction that can significantly reduce overpotential. In this work, Ni3S2 and amorphous MoSx nanorods directly grown on Ni foam (Ni3S2-MoSx/NF) were prepared via one-step solvothermal process, which were used as a high-efficient electrocatalyst for overall water splitting. The Ni3S2-MoSx/NF composite exhibits very low overpotentials of 65 and 312 mV to reach 10 mA cm−2 and 50 mA cm−2 in 1.0 M KOH for HER and OER, respectively. Besides, it exhibits a low Tafel slope (81 mV dec−1 for HER, 103 mV dec−1 for OER), high exchange current density (1.51 mA cm−2 for HER, 0.26 mA cm−2 for OER), and remarkable long-term cycle stability. This work provides new perspective for further the development of highly effective non-noble-metal materials in the energy field.  相似文献   

13.
To design an efficient and cost-effective electrocatalyst based on Prussian blue and its analogs are a promising choice to realize energy transformation and storage via water-splitting. Herein, a facile and practical method is developed to in-situ grow Fe–Co Prussian-blue-analog (PBA) nanocages with an open hole in each face center on Ni(OH)2/NF substrate to form the hierarchical cage-on-plate structure. Furthermore, the Fe–Co PBA nanocages attached to Ni(OH)2/NF plates are hydrogenated and nitrogenized into FeCoNi/NF and FeCoNiN/NF electrodes, respectively. As-prepared electrodes successfully retain the 3D hierarchical micro-nano structures of Fe–Co PBA@Ni(OH)2/NF precursor and can be used as a bifunctional water-splitting catalyst for overall water splitting. Compared to FeCoNi/NF, FeCoNiN/NF shows more efficiency and durability in the electrolytic water splitting tests in alkaline media. For the FeCoNiN/NF electrocatalyst, ultralow overpotentials for hydrogen evolution reaction (HER) are only 56 and 290 mV at current densities of 10 and 500 mA cm?2. Meanwhile, overpotentials for oxygen evolution reaction (OER) are 267 and 374 mV at current densities of 50 and 500 mA cm?2. The FeCoNiN/NF electrode can act both the cathode and the anode for overall water splitting, this electrolyzer only requires a cell voltage of 1.492 V to afford a current density of 10 mA cm?2. This electrolyzer can stably deliver a viable high current density of 625 mA cm?2 for 40 h to meet the condition of industrial application.  相似文献   

14.
Flowers-like 3D hierarchical ternary NiCoMo-layered double hydroxide (NiCoMo-LDH) spheres have been fabricated in substrate-free route via a one-pot hydrothermal method and utilized as efficient electrocatalysts for the OER and HER. The well-structured 3D hierarchical flowers were composed of numerous two-dimensional nanosheets, which inherently possess considerable electrochemical active sites, thereby enhancing catalytic activity. NiMo and CoMo binary LDHs, with similar morphology, were also prepared to illustrate the efficiency of the ternary LDH. The results indicate higher electrocatalytic activity for the ternary LDH as compared to binary LDHs under alkaline conditions. The NiCoMo-LDH required an overpotential as low as 202 and 93 mV to deliver a constant anodic and cathodic current density of 10 mA cm?2 for the OER and HER, respectively. Furthermore, the NiCoMo-LDH exhibited remarkable HER activity, affording a low overpotential of 198 mV at a current density of ?100 mA cm?2. Moreover, it could offer a stable current density of 10 mA cm?2 for overall water splitting at 1.62 V in 1 M KOH with long-term stability for 20 h. The double-layer capacitance (Cdl) value indicated that the NiCoMo-LDH significantly influenced interface conductivity and the electrochemical active surface area. The ternary NiCoMo-LDH electrode yielded low Tafel slope values of 54 and 51 mVdec?1 for the OER and HER. Owing to the efficient incorporation of Ni, Co, and Mo in a layered structure, synergetic effect, and high electrochemical surface area, the NiCoMo-LDH exhibited remarkable electrocatalytic activity. Such eco-friendly ternary LDHs can be used in rechargeable metal–air batteries for industrial applications.  相似文献   

15.
Searching for efficient, stable and low-cost nonprecious catalysts for oxygen and hydrogen evolution reactions (OER and HER) is highly desired in overall water splitting (OWS). Herein, presented is a nickel foam (NF)-supported MoS2/NiFeS2 heterostructure, as an efficient electrocatalyst for OER, HER and OWS. The MoS2/NiFeS2/NF catalyst achieves a 500 mA cm−2 current density at a small overpotential of 303 mV for OER, and 228 mV for HER. Assembled as an electrolyzer for OWS, such a MoS2/NiFeS2/NF heterostructure catalyst shows a quite low cell voltage (≈1.79 V) at 500 mA cm−2, which is among the best values of current non-noble metal electrocatalysts. Even at the extremely large current density of 1000 mA cm−2, the MoS2/NiFeS2/NF catalyst presents low overpotentials of 314 and 253 mV for OER and HER, respectively. Furthermore, MoS2/NiFeS2/NF shows a ceaseless durability over 25 h with almost no change in the cell voltage. The superior catalytic activity and stability at large current densities (>500 mA cm−2) far exceed the benchmark RuO2 and Pt/C catalysts. This work sheds a new light on the development of highly active and stable nonprecious electrocatalysts for industrial water electrolysis.  相似文献   

16.
The fabrication of efficient electrocatalysts for water splitting is vital for production of clean fuels. Herein, cobalt–nickel selenide (CoNi2Se4) nanostructures were fabricated on a Ni foam substrate using a facile potentiostatic method at different deposition solution pH levels. Nanoparticle-, fluffy-, and flake-like CoNi2Se4 nanostructures were deposited by changing the aqueous solution pH to 2.0, 2.5, and 3.0, respectively. The desired flake-like CoNi2Se4 electrode fabricated at pH 3.0 presented the best electrocatalytic performance of all CoNi2Se4 nanostructures in this study and required overpotentials as low as 244 and 184 mV to deliver a current density of 10 mA cm?2 for the OER and HER in 1.0 M KOH, respectively. Furthermore, the electrodes presented long-term stability over 20 h at current densities of 10 and ?10 mA cm?2. Besides, this bifunctional flake-like CoNi2Se4 electrocatalyst delivered outstanding overall water splitting performance and required an external potential of 1.63 V to deliver a current density of 10 mA cm?2.  相似文献   

17.
Hydrogen production by water-splitting has limited commercial application as substantial amount of energy is required for the favorable kinetics of the process. We present an interface engineering strategy for constructing a bifunctional electrode material for an efficient water splitting process. Designed cadmium sulphide and Prussian blue nanorods (CdS-NRs@PBNPs) heterostructures acts as bifunctional electrocatalyst improved water splitting performance, for both HER and OER. For HER, the optimized hybrid CdS-NRs@PBNPs (1:1) showed significantly a low overpotentials of 126 mV and 181 mV at current densities of 10 mA cm?2 and 20 mA cm?2 respectively. For OER it displays an overpotential of 250 mV and 316 mV at current densities of 10 mA cm?2 and 20 mA cm?2. Additionally, the CdS-NRs@PBNPs (1:1) has demonstrated long-term stability. The hybrid's enhanced OER and HER activity is attributable to a synergetic impact between CdS-NRs and PBNPs, as well as the active site modification due to the presence of Cadmium and iron in the hybrid.  相似文献   

18.
Developing an effective and low-cost bifunctional electrocatalyst for both OER and HER to achieve overall water splitting is remaining a challenge to meet the needs of sustainable development. Herein, an electroless plating method was employed to autogenous growth of ultrathin Ni–Fe2B nanosheet arrays on nickel foam (NF), in which the whole liquid phase reduction reaction took no more than 20 min and did not require any other treatments such as calcination. In 1.0 M KOH electrolyte, the resulted Ni–Fe2B ultrathin nanosheet displayed a low overpotential of 250 mV for OER and 115 mV for HER to deliver a current density of 10 mA cm?2, and both OER and HER activities remained stable after 26 h stability testing. Further, the couple electrodes composed of Ni–Fe2B could afford a current density of 10 mA cm?2 towards overall water splitting at a cell voltage of 1.64 V in 1.0 M KOH and along with excellent stability for 26 h. The outstanding electrocatalytic activities can be attributed to the synergistic effect of electron-coupling across Ni and Fe atoms and active sites exposed by large surface area. The effective combination of low cost and high electrocatalytic activity brings about a promising prospect for Ni–Fe2B nanosheet arrays in the field of overall water splitting.  相似文献   

19.
Hydrogen evolution reaction (HER), has been considered as an ideal alternative energy system to alleviate the global energy crisis. Unfortunately, the rational design of a cost-effective, highly active and stable electrocatalyst remains a tough challenge. In this work, a CO2 assisted synthesis of N- doped carbon aerogel derived from silk fibroin (SFCA) without any additives was used to anchor Nickel–Cobalt (NiCo) nanoparticles as an HER electrocatalyst in basic medium (1 M KOH). The obtained SFCA-NiCo electrocatalyst demonstrated outstanding electrochemical performance having an onset potential of 52 mV and a low overpotential of 179 mV at current density of 10 mA cm?2, whilst exhibiting long term stability when tested for 24 h. The outstanding electrocatalytic performance marks SFCA-NiCo as a favourable electrocatalyst for HER and the synthesis strategy paves way for constructing novel catalysts even for other areas.  相似文献   

20.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号