首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is presented to fabricate metakaolin-based geopolymers that are structurally and mechanically stable up to 600°C. The chemical environment of the geopolymers is characterized using thermogravimetric analysis and Fourier-transform infrared spectroscopy. Residual free water turned into steam and caused damage to the geopolymer when exposed to elevated temperatures. The curing temperature was increased from 80 to 120°C to remove water during the curing process. A correlation was drawn between the amount of Si-O-Al linkage formed and the position of fingerprint peaks in infrared spectra, providing a tool to evaluate the level of geopolymerization. Flexural and tensile properties of geopolymers fabricated using the optimized method were measured for no heat treatment and for exposure to elevated temperatures of 200, 400, and 600°C. The flexural strength was measured to be 10.80 ± 2.99 MPa at room temperature, 10.36 ± 0.64 MPa at 400°C, and 8.04 ± 1.60 MPa at 600°C. The flexural modulus is reported to be 13.09 ± 3.40 GPa at room temperature and 11.03 ± 0.53 GPa at 600°C. The flexural toughness decreased with increasing temperature. The tensile properties of the geopolymer were measured with direct tensile tests paired with an extensometer. The tensile strength decreased from 4.16 ± 2.08 MPa at room temperature to 3.13 ± 0.97 MPa at 400°C, and 2.75 ± 0.86 MPa at 600°C. The Young's modulus decreased from 45.38 ± 30.30 GPa at room temperature to 26.88 ± 6.65 GPa at 600°C. Both flexural and tensile tests have shown that the metakaolin-based geopolymers cured at 120°C is mechanically stable at temperatures up to 600°C.  相似文献   

2.
《Ceramics International》2022,48(10):14076-14090
Environmental issues caused by glass fiber reinforced polymer (GFRP) waste have attracted much attention. The development of cost-effective recycling and reuse methods for GFRP composite wastes is therefore essential. In this study, the formulation of the GFRP waste powder replacement was set at 20–40 wt%. The geopolymer was formed by mixing GFRP powder, fly ash (FA), steel slag (SS) and ordinary Portland cement (OPC) with a sodium-based alkali activator. The effects of GFRP powder content, activator concentration, liquid to solid (L/S) ratio, and activator solution modulus on the physico-mechanical properties of geopolymer mixtures were identified. Based on the 28-day compressive strength, the optimal combination of the geopolymer mixture was determined to be 30 wt% GFRP powder content, an activator concentration of 85%, L/S of 0.65, and an activator solution modulus of 1.3. The ratios of compressive strength to flexural strength of the GFRP powder/FA-based geopolymers were considerably lower than those of the FA/steel slag-based geopolymers, which indicates that the incorporation of GFRP powder improved the geopolymer brittleness. The incorporation of 30% GFRP powder in geopolymer concrete to replace FA can enhance the compressive and flexural strengths of geopolymer concrete by 28%. After exposure to 600 °C, the flexural strength loss for geopolymer concretes containing 30 wt% GFRP powder was less than that of specimens without GFRP powder. After exposure to 900 °C, the compressive strength and flexural strength losses of geopolymer concretes containing 30 wt% GFRP powder were similar to those of specimens without GFRP powder. The developed GFRP powder/FA-based geopolymers exhibited comparable or superior physico-mechanical properties to those of the FA-based geopolymers, and thus offer a high application potential as building construction material.  相似文献   

3.
《Ceramics International》2017,43(9):6700-6708
This article presents the results of the compositional, structural and morphological study of geopolymers synthesized from metakaolin and an alkali activator. The study involved the investigation of the structural and chemical properties of the geopolymer, in addition to thermally treated geopolymers up to 600 and 900 °C. The precursor of the geopolymer, and the geopolymer samples before and after the thermal treatment, were investigated by Fourier transformation infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and SEM analysis. The corrected average value of the ratio of silicon and aluminum in the geopolymer samples (SiGP:Al) is about 1.46, which suggests that the obtained geopolymer samples represent a mixture of roughly equal amounts of sialate and sialate-siloxo units. Annealing the geopolymer samples at 600 °C decreases the amount of Si-ONa bonds and induces the cross-linking of polymer changes. At the same time, other sodium containing alumino-silicate phases are created. The thermal treatment at 900 °C leads to a considerable reduction of oxygen and particularly sodium, followed by significant morphological changes i.e. formation of a complex porous structure. Additionally, a new semicrystaline phase appears. Both XRD and XPS results imply that this new phase may be nepheline and it is plausible that this phase begins to nucleate at temperatures below 900 °C.  相似文献   

4.
This study explores the viability of fiberglass‐geopolymer composites as an intermediate temperature structural ceramic composite. E‐glass fibers are cheap, readily available, resistant to heat, electricity and chemical attack. Geopolymers are refractory and can be processed at room temperature. However, pure geopolymers have low tensile strength and fracture toughness, as is typical of ceramics. In this work, tensile and flexure properties of metakaolin‐based sodium and potassium geopolymers reinforced with E‐glass leno weaves were measured and the data was analyzed by Weibull statistics. The average tensile and flexural strengths for sodium geopolymer reinforced with E‐glass leno weaves were 39.3 ± 7.2 MPa and 25.6 ± 4.8 MPa, respectively. For potassium geopolymer reinforced with E‐glass leno weaves, the average tensile and flexural strengths were 40.7 ± 9.9 MPa and 15.9 ± 4.0 MPa, respectively. The composites were heat treated for one hour at two temperatures, 300°C and 550°C and their flexure properties were studied at room temperatures. The average flexural strengths for sodium geopolymer reinforced with E‐glass leno weaves were reduced to 6.6 ± 1.0 MPa after heat treatment at 300°C, and 1.2 ± 0.3 MPa after heat treatment at 550°C, respectively. For potassium geopolymer reinforced with E‐glass leno weaves, the average flexural strengths were 6.1 ± 1.5 MPa and 1.3 ± 0.3 MPa after heat treatment at 300°C and 550°C, respectively. SEM and EDS were performed to observe the fiber‐matrix interface. XRD was done to check if the geopolymer was amorphous as expected.  相似文献   

5.
The main purpose of this study is to develop a user-friendly one-part geopolymer using vanadium tailing (VT). Geopolymeric precursor consists of activated VT and metakaolin that can react directly with water to form geopolymers. The roasting temperature plays an important role in the VT activation, which affects the compressive strength of the final geopolymer. The geopolymer with accepted compressive strength, that is 29.0 MPa after 7 days curing in ambient condition, can be prepared using VT after thermal activation at appropriate temperature (400-600°C). As the roasting temperature is increased to 700°C, the VT is molten and sintered and the ability of providing alkaline and Si4+ is drastically weakened, which results in a poor compressive strength geopolymer.  相似文献   

6.
《Ceramics International》2017,43(14):11233-11243
Geopolymer is a popular construction material derived from different sources of aluminosilicates known for its environmental benefits and excellent durability in harsh conditions. However, the curing of fly-ash based geopolymer normally requires a thermal treatment that increases the manufacturing cost and carbon footprint. This paper explored a new economical and environmentally-friendly alternative, i.e. solar curing, that harnesses solar radiation to achieve accelerated geopolymerization process. Geopolymer mortars coated in two different greyscales namely solar curing black (SCB) and 40% black (grey, SCG) were prepared to study the effect of solar radiation absorption ability on the strength of the specimens, along with ambient cured specimens (ATC) for comparison. Mechanical properties such as workability, compressive strength, stress-strain relationship from 1 day to 28 days were tested. The SCB specimens that can easily reach 65 °C under the sun showed a substantial improvement of the compressive strength especially at the early age, i.e. 49.2 MPa at 1-day compared with 25.5 MPa for the ATC ones. At 28-day, SCB reached 92 MPa in compressive strength which is 17.8% (13.9 MPa) higher than that of ATC. SCG showed a moderate enhancement in strength. Through in-depth physical and chemical characterizations, the structure and morphology of geopolymers were identified through X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). It was found that geopolymer cured by solar radiation had more calcium aluminate silicate content hence leading to a higher mechanical strength. Furthermore, a titration study that determines the conversion rate of the activators inside geopolymers suggested a faster geopolymerization process in the solar cured specimens.  相似文献   

7.
《Ceramics International》2022,48(12):17104-17115
This study reports on the early hydration properties and microstructure evolutions of MgO-activated slag at five curing temperatures (20 °C, 40 °C, 50 °C, 60 °C, and 80 °C) and three MgO types (S-MgO, M ? MgO, and R-MgO). The results indicated that high-temperature curing substantially increased the compressive strength of the specimens. Particularly, the highest strength was obtained at 40 °C and 60 °C for the S-MgO and M-MgO-activated slag specimens, respectively, and the high curing temperature for the R-MgO-activated slag specimen was 40 °C. We focused on the relationship between the mechanical properties, pore structure characteristics, and hydration products. The combination of calcium-silicate-hydrate (C-S-H) gel and Al increased under high-temperature curing conditions. XRD, FT-IR, TG-DTG, and 27Al MAS-NMR results showed a high Al content in the formation of calcium silicate hydrate with Al in its structure (C-A-S-H gel) for the R-MgO-activated slag pastes under high-temperature curing; however, the microstructure was loose owing to the formation of excessive brucite. For the S-MgO-activated slag specimen, the Ca/Si ratio was high, with more Mg2+ penetrating the C-S-H gel interlayer, forming more hydrotalcite-like phases and increasing the chain length of the C-S-H gel. The microstructure showed good compatibility of the hydration products interweaving to form dense microstructures.  相似文献   

8.
Environment friendly geopolymer is a new binder which gained increased popularity due to its better mechanical properties, durability, chemical resistance, and fire resistance. This paper presents the effect of nano silica and fine silica sand on residual compressive strength of sodium and potassium based activators synthesised fly ash geopolymer at elevated temperatures. Six different series of both sodium and potassium activators synthesised geopolymer were cast using partial replacement of fly ash with 1%, 2%, and 4% nano silica and 5%, 10%, and 20% fine silica sand. The samples were heated at 200°C, 400°C, 600°C, and 800°C at a heating rate 5°C per minute, and the residual compressive strength, volumetric shrinkage, mass loss, and cracking behaviour of each series of samples are also measured in this paper. Results show that, among 3 different NS contents, the 2% nano silica by wt. exhibited the highest residual compressive strength at all temperatures in both sodium and potassium‐based activators synthetised geopolymer. The measured mass loss and volumetric shrinkage are also lowest in both geopolymers containing 2% nano silica among all nano silica contents. Results also show that although the unexposed compressive strength of potassium‐based geopolymer containing nano silica is lower than its sodium‐based counterpart, the rate of increase of residual compressive strength exposed to elevated temperatures up to 400°C of potassium‐based geopolymer containing nano silica is much higher. It is also observed that the measured residual compressive strengths of potassium based geopolymer containing nano silica exposed at all temperatures up to 800°C are higher than unexposed compressive strength, which was not the case in its sodium‐based counterpart. However, in the case of geopolymer containing fine silica sand, an opposite phenomenon is observed, and 10% fine silica sand is found to be the optimum content with some deviations. Quantitative X‐ray diffraction analysis also shows higher amorphous content in both geopolymers containing nano silica at elevated temperatures than those containing fine silica sand.  相似文献   

9.

This work aims to study the thermal behavior of basic-geopolymers derived from metakaolin (clay). The geopolymers were characterized by different techniques: thermal analysis (DTA, TGA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and impedance spectroscopy. Some physicochemical properties of the products were also determined: the phases obtained after geopolymer heat treatment and their electrical properties. The results obtained after drying and heat treatment showed that the products kept their initial shapes, but revealed variable colors depending on the temperatures at which they were treated. The products obtained are amorphous between 300 up to 600 °C with peaks relating to the presence of nanocrystallites of muscovites and zeolite, thus at 900 °C it is quite amorphous but only contains nanocrystallites of muscovites. From the temperature of 950 °C, we notice that the geopolymer has been transformed into a crystalline compound predominated by the Nepheline (NaAlSiO4) with the presence of a crystalline phase by minor peaks of Muscovite, this crystalline character has been increased at 1100 °C to obtain a whole phase crystalline of a Nepheline. The treatment of this geopolymer for one hour at 1200 °C shows an amorphous phase again corresponding to corundum (α-Al2O3). This indicates that the dissolution of the grains by the liquid phase induces the conversion of the material structure from sialate [–Si–O–Al–O] to sialate siloxo [–Si–O–Al–O–Si–O–] and the formation of a new crystalline phase (α-Al2O3). This development of sialate to sialate-siloxo was confirmed by IR spectroscopy. As mentioned above, from 300 to 900 °C, Na-sialate geopolymer exhibits the same disorder structure of nepheline. The crystal structure of nepheline is characterized by layers of six-membered tetrahedral rings of exclusively oval conformation. The rings are built by Regularly alternating tetrahedral AlO4 and SiO4. Stacking the layer’s parallel to the c axis gives a three-dimensional network containing channels occupied by Na cations. This topology favors easy movement of Na+ ions throughout the structure. For this reason, ionic migration in nepheline is widely reported. The refinement of Na-Sialate geopolymer at room temperature gives bulk high ionic conductivity of about 5 × 10?5 S cm?1 and this is due to the probable joint contribution of H+ and Na+ ions. Above 200 °C, Na+ seems to remain the only charge carrier with a low activation energy of about Ea?=?0.26 eV. At higher temperatures, the characteristic frequencies become so close that it is impossible to distinguish the contributions. A total resistance comprising both grain and grain boundaries contribution is then determined.

  相似文献   

10.
A serial of multi-walled carbon nanotubes (MWCNTs) reinforced geopolymer composites were prepared, and then heated at elevated temperature to fabricate MWCNTs/leucite composites by in situ transformation. Effects of high-temperature treatment on the microstructure evolution and mechanical performance of the composites were investigated. The results indicated that the introduction of MWCNTs could improve the mechanical properties of geopolymer, and the optimum content was 3 wt%. The mechanical performance declined instead with the further increase in MWCNTs content up to 5 wt%, which could be attributed to the agglomeration of MWCNTs. Significant improvements in mechanical properties were achieved after the composites were treated in a temperature range from 950 °C to 1200 °C relative to their original state before heat treatment. The significant improvements could be described to the matrix densification, and leucite formation as well as the proper interface bonding state between carbon nanotube and leucite matrix.  相似文献   

11.
粉煤灰地聚合物是以粉煤灰为硅铝质原料制备的,具有强度高、耐高温、耐腐蚀、有效固封金属离子等优点.但它固有的脆性以及需高温养护才能快速获得高强度的特点限制了其运用范围,而以纤维作为增强材料不仅可以提高粉煤灰地聚合物的强度,还可以改善其延性和韧性.本文主要从粉煤灰原料特性、碱激发剂、养护制度和增强材料四方面入手,重点阐述了...  相似文献   

12.
《Ceramics International》2022,48(12):16562-16575
The flexural properties and thermal performance of 10 mm-thin geopolymers made from fly ash and ladle furnace slag were evaluated before and after exposure to elevated temperatures (300 °C, 600 °C, 900 °C, 1100 °C and 1150 °C). Class F fly ash was mixed with liquid sodium silicate (Na2SiO3) and 12 M sodium hydroxide (NaOH) solution using aluminosilicate/activator ratio of 1:2.5 and Na2SiO3/NaOH ratio of 1:4 to synthesise thin fly ash (FA) geopolymers. 40 wt% of ladle furnace slag was partially replacing fly ash to produce fly ash/slag-based (FAS) geopolymers. Thermal treatment enhanced the flexural strength of thin geopolymers. In comparison to the unexposed specimen, the flexural strength of FA geopolymers at 1150 °C and FAS geopolymers 1100 °C was increased by 161.3% to 16.2 MPa and 208.9% to 24.1 MPa, respectively. A more uniform heating was achieved in thin geopolymers which favoured the phase transformation at high temperatures and contributed to the substantial increase in flexural strength. The joint effect of elevated temperature exposure and the incorporation of ladle furnace slag further improved the flexural strength of thin geopolymers. The calcium-rich slag refined the pore structure and increased the crystallinity of thin geopolymers which aided in high strength development.  相似文献   

13.
The geopolymers were prepared from sodium silicate, metakaolinite, NaOH and H2O at SiO2:Al2O3:Na2O:H2O of 3.66:1:1:x, where x = 8–17, and curing temperatures of 70–110 °C. Since the bending strength of the geopolymers was highest (36 MPa) where H2O/Al2O3 = 9 and the curing temperature = 90 °C, these conditions were adopted. The porous geopolymers were prepared by kneading PLA fibers of 12, 20 and 29 μm diameter into the geopolymer paste, at fiber volumes of 13–28 vol%. The resulting paste was extruded using a domestic extruder, cured at 90 °C for 2 days then dried at the same temperature. The PLA fibers in the composites were removed by alkali treatment and/or heating. The highest capillary rise was achieved in the porous geopolymers containing 28 vol% of 29 μm fibers. The capillary rise of this sample, estimated by the equation of Fries and Dryer1 was 1125 mm.  相似文献   

14.
Geopolymer composites reinforced with refractory, chopped basalt fibers, and low melting glass were fabricated and heat treated at higher temperatures. K2O·Al2O3·4SiO2·11H2O was the stoichiometric composition of the potassium-based geopolymer which was produced from water glass (fumed silica, deionized water, potassium hydroxide), and metakaolin. Addition of low melting glass (Tm ~815°C) increased the flexure strength of the composites to ~5 MPa after heat treatment above 1000°C to 1200°C. A Weibull statistical analysis was performed exhibiting how the amorphous self-healing and self-glazing effect of the glass frit significantly improved the flexure strength of the geopolymer and ceramic composites after exposure for 1 hour to high temperatures. At 950-1000°C, the K-based geopolymer converted to primarily a crystalline leucite ceramic, but the basalt fiber remained intact, and the melted glass frit flowed out of the surface cracks and sealed them. 1150℃ was determined to be the optimum heat treatment temperature, as at ≤1200°C, the basalt fibers melt and the strength of the reinforcement in the composites is significantly reduced. The amorphous self-healing and amorphous self-glazing effects of the glass frit significantly improved the room temperature flexure strength of the heat-treated geopolymer and ceramic composites.  相似文献   

15.
《Ceramics International》2023,49(18):29808-29819
Phase change materials (PCMs) are prospective energy materials that are widely applied in building energy conservation, waste heat recovery, infrared stealth technology and solar dynamic power system. The enhancement of heat transfer and leak-proof performance are critical to PCMs. Although geopolymers have been applied in thermal energy storage, meanwhile, hierarchically porous geopolymers have already shown superb performance in various functional applications, to the authors’ knowledge, no report concerning the application of hierarchical porous ones have been issued. This paper concerns the preparation of a shape-stabilized composite PCMs, consisting of hierarchically porous kaolinite-based geopolymer (PKG) embedding polyethylene glycol 4000 (PEG4000), which shows promising prospects in thermal energy storage. Optimized porous geopolymer matrices feature high porosity (>83%), combined with high specific surface area (4.7 m2/g) and thermal conductivity (TC, 1.324 W·m−1·K−1). Furthermore, the shape-stabilized composite PCMs show excellent thermal energy storage properties: loading rate of 80.93 wt%, latent heat of 168.80 J g−1 and TC of ∼0.36 W·m−1·K−1 at 20–30 °C, which is 1.64 times of the TC of pure PEG4000. Finally, the photothermal conversion performances of the shape-stabilized composite PCMs were also simulated.  相似文献   

16.
《Ceramics International》2017,43(18):16063-16069
Our previous research paper on geopolymer-mullite composites showed promising results on compressive strength and fire resistance. However, no improvement in thermal shock resistance was observed in the afore mentioned study. In this study, further attempts to improve thermal shock resistance of the geopolymer were explored. The research was performed by compositing a fly ash-based geopolymer with cordierite-mullite at 20, 40 and 60 wt% replacement. X-ray diffraction (XRD) of the cured geopolymer composite specimens showed the existence of cordierite, mullite, quartz, cancrinite and lazurite. It was found that compressive strength and strength retention after thermal exposure at 400 °C were improved in the geopolymer composite specimens, especially those with 20–40 wt% replacement. Upon further heating to 600 °C, all geopolymer specimens showed insignificant differences in compressive strength. Fire resistance was found to improve with increasing proportion of replacement contents.  相似文献   

17.
In this paper, geopolymer concrete bond with both deformed and smooth reinforcing steel bars is investigated using the standard RILEM pull-out test. The geopolymer binder is composed of 85.2% of low calcium fly ash and 14.8% of ground granulated blast furnace slag (GGBFS). The tests were aimed to assess the development of the bond strength from 24 h to 28 days after casting, with different heat curing conditions. The results show that 48 h of heat curing at 80 °C is required in order to obtain similar or better performances to those of the reference 45 MPa OPC concrete. The 28-day bond strength and the overall bond stress–slip behaviour of the geopolymer concrete were similar to those previously reported for OPC-based concretes. Providing intensive heat curing, high early bond strength can be achieved showing that Class F fly ash geopolymer concrete is well suited for precast applications.  相似文献   

18.
Sustainable alkali activation of pumice from Turkish origin was studied by a partial replacement of metakaolin and/or fumed silica additives. Following the characterization of as-received pumice by X-ray fluorescence spectroscopy, x-ray diffraction, and nuclear magnetic resonance spectroscopy, a series of powder mixtures were prepared by introducing metakaolin and/or fumed silica (8, 14, and 20 M) into 1 M of the pumice. The mixtures were then dissolved in 11 M NaOH or sodium silicate solutions. The slurries were poured into polyacetal molds to obtain geopolymer samples for mechanical testing and cured in a constant 50°C temperature in a humidity oven for 48 h and then left for 1 week to undergo additional curing at ambient temperature. The microstructural, mechanical, and thermal properties of the final geopolymer samples were determined by XRD, scanning electron microscopy, Weibull analysis of 3-point flexural and compressive tests and thermal conductivity measurements. Results showed that all the Weibull values were best for 14 M of metakaolin and/or fumed silica. The metakaolin-added pumice yielded higher compressive strengths of (53.78 ± 33.30 MPa) than fumed silica (10.87 ± 4.04 MPa) and fumed silica plus metakaolin (41.22 ± 5.16 MPa). Thermal conductivities (0.19–0.46 Wm–1K–1) were also comparable to the thermal conductivity of metakaolin-based geopolymers.  相似文献   

19.
李秋  姜雨杭  耿海宁  陈伟 《硅酸盐通报》2022,41(5):1805-1812
钢结构因具有多种优点而被广泛应用于工程建筑领域,但其在火灾高温环境下会丧失力学性能,造成结构失效,因此对钢结构进行防火保护成为关键。以偏高岭土、矿粉和憎水处理后的膨胀珍珠岩为主要原材料,模数为1.5的钾水玻璃为激发剂,制备非膨胀型钾基地聚物基防火涂料,并采用大板燃烧法研究该涂料在1 200 ℃下的防火性能;同时,对其在室温、1 000 ℃以及1 100 ℃热处理前后的力学性能、表观形貌、物相组成、微观结构演变进行了表征分析,探究地聚物在高温过程中的陶瓷化过程。结果表明:该防火涂料具有优异的防火能力,在1 200 ℃下进行2 h耐火极限试验后,钢板背面温度低于160 ℃;防火涂料在1 100 ℃高温热处理2 h后,抗压强度大幅增加至室温强度的5.8倍,达30.80 MPa;防火涂料基体的无定型地聚物相在800 ℃开始发生陶瓷化转变,1 100 ℃时生成的陶瓷相主要为钙长石、莫来石以及白榴石。  相似文献   

20.
This paper presents the compressive strength of fly‐ash‐based geopolymer concretes at elevated temperatures of 200, 400, 600 and 800 °C. The source material used in the geopolymer concrete in this study is low‐calcium fly ash according to ASTM C618 class F classification and is activated by sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) solutions. The effects of molarities of NaOH, coarse aggregate sizes, duration of steam curing and extra added water on the compressive strength of geopolymer concrete at elevated temperatures are also presented. The results show that the fly‐ash‐based geopolymer concretes exhibited steady loss of its original compressive strength at all elevated temperatures up to 400 °C regardless of molarities and coarse aggregate sizes. At 600 °C, all geopolymer concretes exhibited increase of compressive strength relative to 400 °C. However, it is lower than that measured at ambient temperature. Similar behaviour is also observed at 800 °C, where the compressive strength of all geopolymer concretes are lower than that at ambient temperature, with only exception of geopolymer concrete containing 10 m NaOH. The compressive strength in the latter increased at 600 and 800 °C. The geopolymer concretes containing higher molarity of NaOH solution (e.g. 13 and 16 m ) exhibit greater loss of compressive strength at 800 °C than that of 10 m NaOH. The geopolymer concrete containing smaller size coarse aggregate retains most of the original compressive strength of geopolymer concrete at elevated temperatures. The addition of extra water adversely affects the compressive strength of geopolymer concretes at all elevated temperatures. However, the extended steam curing improves the compressive strength at elevated temperatures. The Eurocode EN1994:2005 to predict the compressive strength of fly‐ash‐based geopolymer concretes at elevated temperatures agrees well with the measured values up to 400 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号