首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
We report a double-ceramic-layer (DCL) thermal barrier coating (TBC) with high-entropy rare-earth zirconate (HE-REZ) as the top layer and yttria stabilized zirconia (YSZ) as the inner layer sprayed on Ni-based superalloy by atmospheric plasma spraying. La2Zr2O7 (LZ) was selected as a reference for the HE-REZ. Thermal cycling test results demonstrate that the HE-REZ/YSZ DCL coating exhibited obviously improved thermal stability when compared to the LZ/YSZ DCL coating. The reasons for the improvement of the thermal shock resistance are considered to be the anti-sinterability of the HE-REZ ceramics during the thermal cycling test attributed to the sluggish diffusion effect and as well as the better match in the coefficient of thermal expansion of HE-REZ coating with the YSZ inner layer. In addition, the HE-REZ coating maintains fluorite structure after thermal cycling test. This study makes one step forward in the development and application of high-entropy rare-earth zirconate ceramic thermal barrier coatings.  相似文献   

2.
Five equimolar multicomponent oxides were synthesized by replacing one of five cations in (Ce0.2Zr0.2Ti0.2Sn0.2Hf0.2)O2 with Ca2+. The results reveal that except for the one in which Ce4+ replaced by Ca2+, the other four components can form single-phase high-entropy fluorite oxides (HEFOs) at different temperatures, which indicates that Ce4+ is very important for the formation of single-phase HEFOs. The sintering behavior, lattice parameter and properties containing density, porosity, flexural strength and thermal conductivity of the four single-phase HEFOs were investigated. With the change of substituted ions, grain size, relative density, flexural strength and thermal conductivity of the materials vary greatly, which are correlated to the size disorder and mass disorder of these materials. The results of this paper provide a reference for the composition designing and performance tailoring of equimolar HEFOs.  相似文献   

3.
《Ceramics International》2022,48(24):36084-36090
The high-entropy ceramic materials (Zr0.25Ce0.25Hf0.25Y0.25)O1.875 (H-0) and (Zr0.2Ce0.2Hf0.2Y0.2RE0.2)O1.8 (H-RE) (RE = La, Nd and Sm) with fluorite structure and homogeneous element distribution were prepared. With fluorite structure, fine grain size and high density, the H-0 and H-RE ceramics displayed low thermal conductivity, suitable thermal expansion coefficient, high hardness and fracture toughness. The effect of La, Nd and Sm on the mechanical, heat conductivity and heat expansion properties of high entropy ceramics were discussed. The single-phase high-entropy ceramic materials in this work are very suitable for application as thermal barrier materials.  相似文献   

4.
High-entropy perovskite thin films, as the prototypical representative of the high-entropy oxides with novel electrical and magnetic features, have recently attracted great attention. Here, we reported the electronic structure and charge transport properties of sol-gel-derived high-entropy Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 thin films annealed at various temperatures. By means of X-ray photoelectron spectroscopy and absorption spectrum, it is found that the conduction-band-minimum shifts downward and the valence-band-maximum shifts upward with the increase of annealing temperature, leading to the narrowed band gap. Electrical resistance measurements confirmed a semiconductor-like behavior for all the thin films. Two charge transport mechanisms, i.e., the thermally-activated transport mechanism at high temperatures and the activation-less transport mechanism at low temperatures, are identified by a self-consistent analysis method. These findings provide a critical insight into the electronic band structure and charge transport behavior of Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3, validating it as a compelling high-entropy oxide material for future electronic/energy-related technologies.  相似文献   

5.
《Ceramics International》2022,48(7):9602-9609
The (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 (x = 0–0.5) high-entropy ceramics were successfully prepared by a solid state reaction method and their structures and thermo-physical properties were investigated. It was found that the high-entropy ceramics demonstrate pure pyrochlore phase with the composition of x = 0.1–0.5, while (La0.2Gd0.2Y0.2Yb0.2Er0.2)2Zr2O7 shows the defective fluorite structure. The sintered high-entropy ceramics are dense and the grain boundaries are clean. The grain size of high-entropy ceramics increases with the Ti4+ content. The average thermal expansion coefficients of the (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics range from 10.65 × 10?6 K?1 to 10.84 × 10?6 K?1. Importantly, the substitution of Zr4+ with Ti4+ resulted in a remarkable decrease in thermal conductivity of (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics. It reduced from 1.66 W m?1 K?1 to 1.20 W m?1 K?1, which should be ascribed to the synergistic effects of mass disorder, size disorder, mixed configuration entropy value and rattlers.  相似文献   

6.
High-entropy ceramics exhibit great application potential as thermal barrier coating (TBC) materials. Herein, a series of novel high-entropy ceramics with RE2(Ce0.2Zr0.2Hf0.2Sn0.2Ti0.2)2O7 (RE2HE2O7, RE = Y, Ho, Er, or Yb) compositions were fabricated via a solid-state reaction. X-ray diffraction (XRD) and energy dispersive spectrometry (EDS) mapping analyses confirmed that RE2HE2O7 formed a single defect fluorite structure with uniform elemental distribution. The thermophysical properties of the RE2HE2O7 ceramics were investigated systematically. The results show that RE2HE2O7 ceramics have excellent high-temperature phase stability, high thermal expansion coefficients (10.3–11.7 × 10?6 K-1, 1200 ℃), and low thermal conductivities (1.10-1.37 W m-1 K-1, 25 ℃). In addition, RE2HE2O7 ceramics have a high Vickers hardness (13.7–15.0 GPa) and relatively low fracture toughness (1.14-1.27 MPa m0.5). The outstanding properties of the RE2HE2O7 ceramics indicate that they could be candidates for the next generation of TBC materials.  相似文献   

7.
High-entropy fluorite oxides   总被引:1,自引:0,他引:1  
Eleven fluorite oxides with five principal cations (in addition to a four-principal-cation (Hf0.25Zr0.25Ce0.25Y0.25)O2-δ as a start point and baseline) were fabricated via high-energy ball milling, spark plasma sintering, and annealing in air. Eight of the compositions, namely (Hf0.25Zr0.25Ce0.25Y0.25)O2-δ, (Hf0.25Zr0.25Ce0.25)(Y0.125Yb0.125)O2-δ, (Hf0.2Zr0.2Ce0.2)(Y0.2Yb0.2)O2-δ, (Hf0.25Zr0.25Ce0.25)(Y0.125Ca0.125)O2-δ, (Hf0.25Zr0.25Ce0.25)(Y0.125Gd0.125)O2-δ, (Hf0.2Zr0.2Ce0.2)(Y0.2Gd0.2)O2-δ, (Hf0.25Zr0.25Ce0.25)(Yb0.125Gd0.125)O2-δ, and (Hf0.2Zr0.2Ce0.2)(Yb0.2Gd0.2)O2-δ, possess single-phase solid solutions of the fluorite crystal structure with high configurational entropies (on the cation sublattices), akin to those high-entropy alloys and ceramics reported in prior studies. Most high-entropy fluorite oxides (HEFOs), except for the two containing both Yb and Gd, can be sintered to high relative densities. These single-phase HEFOs exhibit lower electrical conductivities and comparable hardness (even with higher contents of softer components such as Y2O3 and Yb2O3), in comparison with 8?mol. % Y2O3-stabilized ZrO2 (8YSZ). Notably, these single-phase HEFOs possess lower thermal conductivities than that of 8YSZ, presumably due to high phonon scattering by multiple cations and strained lattices.  相似文献   

8.
A nano dual-phase powder with great sinterability was synthesized by molten-salt assisted borothermal reductions at 1100 °C using B, ZrO2, HfO2, Ta2O5, Nb2O5 and TiO2 powders as raw materials. Single-phase (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 high-entropy ceramic was prepared by spark plasma sintering using the as-synthesized nano dual-phase powder. Oxidation behavior of the (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic was investigated over the range of 30–1400 °C in air and the result indicated that the rapid oxidation of ceramic began at 1300 °C. The phenomenon could be ascribed to the rapid volatilization of B2O3 from oxide scale. A layered structure was formed at the cross section of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic after oxidation. The relationship between partial pressures of gaseous metal oxides and oxygen partial pressures was calculated, which inferred that the formation of layered structure could be ascribed to the active oxidation of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2, the generation of gaseous metal oxides, their outward diffusion and further oxidation.  相似文献   

9.
Sand corrosion, thermal expansion, and ablation properties of a new class of medium- and high-entropy compositionally complex fluorite oxides (CCFOs) are examined as potential protective coating materials. Five binary oxides were mixed and sintered into dense, single-phase CCFOs of the general formula: [Hf(1-2x)/3Zr(1-2x)/3Ce(1-2x)/3YxYbx]O2-δ (x = 0.2, 0.074, and 0.029). These CCFOs exhibit decreased molten sand infiltration and interaction at intermediate temperatures (1200-1300°C) in comparison with a cubic yttria-stabilized zirconia (YSZ) reference; however, at higher temperatures, the trend is reversed due to the increased chemical reactivity. The equimolar high-entropy (Hf0.2Zr0.2Ce0.2Y0.2Yb0.2)O2-δ exhibits no grain boundary penetration by molten sand at all examined temperatures (1200°C-1500°C), although reaction and precipitation are significant. Moreover, these CCFOs exhibit higher intrinsic thermal expansion coefficients (CTE) than the YSZ reference, thereby being more compatible with Ni-based superalloys. The 8YSZ-like (Hf0.284Zr0.284Ce0.284Y0.074Yb0.074)O2-δ exhibits the highest CTE in this series of CCFOs due to oxygen clustering effects. Finally, these CCFOs also exhibit lower emissivities and form unique faceted microstructures in ablative environments.  相似文献   

10.
A2B2O7-type oxides with low thermal conductivities are potential candidates for next-generation thermal barrier coatings. The formation of high-entropy ceramics is considered as a newly effective way to further lower their thermal conductivities. High-entropy Y2(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)2O7 (5HEO) and Y2(Ti0.25Zr 0.25Hf0.25Ta0.25)2O7 (4HEO) ceramics were prepared by in situ solid reaction sintering, considering the important roles of B-site cations on thermal conductivities of the A2B2O7-type oxides. Reaction process, phase structures, microstructures, and thermal conductivities of the as-sintered ceramics were investigated. Lattice distortion effects on their thermal conductivities were also discussed by using the proposed criterion based on the supercell volume difference of the individual compounds. Near fully-dense 5HEO and 4HEO ceramics were obtained after being sintered at 1600°C. The former one had a dual-phase structure containing high-entropy Y2(Ti0.227Zr0.227Hf0.227Nb0.136Ta0.182)2O7.318 pyrochlore oxide (5HEO-P) and Y(Nb, Ta)O4 solid solution, while the latter one was a single-phase pyrochlore oxide (4HEO-P) with homogeneous element distribution. The formed 5HEO-P oxide has larger lattice distortion than 4HEO-P oxide due to the larger total amounts of Nb and Ta cations at B sites in the 5HEO-P oxide. It results in lower thermal conductivity of 5HEO ceramics (keeping at 1.8 W·m–1·K–1) than those of 4HEO ceramics (ranging from 1.8 to 2.5 W·m–1·K–1) at temperatures from 25°C to 1400°C. Their glass-like thermal conductivities were determined by the selection of B site cations and high-entropy effects. These results provide some useful information for the material design of novel thermal barrier coating materials.  相似文献   

11.
In this work, a novel high-entropy n-type thermoelectric material Sr0.9La0.1(Zr0.25Sn0.25Ti0.25Hf0.25)O3 with pure perovskite phase was prepared using a conventional solid state processing route. The results of TEM and XPS show that various types of crystal defects and lattice distortions, such as oxygen vacancies, edge dislocations, in-phase rotations of octahedron and antiparallel cation displacements coexist in this high-entropy ceramic. At 873 K, the high-entropy ceramics showed both a low thermal conductivity (1.89 W/m/K) and a high Seebeck coefficient (393 μV/K). This work highlights a way to obtain high-performance perovskite-type oxide thermoelectric materials through high-entropy composition design.  相似文献   

12.
In this paper, we explored the possibility of forming single-phase high-entropy fluorite oxides (HEFOs) in the (Ce0.2Zr0.2Ti0.2Sn0.2M0.2)O2-δ (M = Mg, Y, Yb, and Ca) system. The result showed that single-phase high-entropy fluorite can only be obtained from (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ. Compared with other reported anion-deficient HEFOs, this material has the lowest rare earth element content, the smallest average cationic radius and the lowest theoretical density. The effects of cation radius and starting materials on the formation of single-phase HEFOs are discussed.  相似文献   

13.
《Ceramics International》2023,49(7):10936-10945
Pyrochlore-type La2Zr2O7 (LZ) is a promising candidate for high-temperature thermal barrier coatings (TBCs). However, its thermal expansion coefficient and low fracture toughness are not optimal for such application and thus, need to be improved. In this study, we systematically report the effect of CeO2 addition on phase formation, oxygen-ion diffusion, and thermophysical and mechanical properties of full compositions La2(Zr1?xCex)2O7 (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1). La2(Zr1?xCex)2O7 exhibits a pyrochlore structure at x ≤ 0.3, while a fluorite structure is observed outside this range. With the increase in CeO2 content, thermal expansion coefficient and oxygen-ion diffusivity in La2(Zr1?xCex)2O7 are increased. Oxygen-ion diffusivity of La2(Zr1?xCex)2O7 is two orders of magnitude less than that of classical 8YSZ. Among La2(Zr1?xCex)2O7 compounds, La2(Zr0.7Ce0.3)2O7 and La2(Zr0.5Ce0.5)2O7 exhibit relatively low oxygen diffusivities. The composition La2(Zr0.5Ce0.5)2O7 presents the lowest thermal conductivity due to the strongest phonon scattering and also the highest fracture toughness due to the solid-solution toughening. The highest sintering resistance is achieved by the composition La2(Zr0.7Ce0.3)2O7 because of its ordered pyrochlore structure and high atomic mass of Ce. Based on these results, the compositions La2(Zr0.5Ce0.5)2O7 and La2(Zr0.7Ce0.3)2O7 are alternatives for classical 8YSZ for TBC materials operating at ultrahigh temperatures.  相似文献   

14.
Single-phase (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ porous high-entropy ceramics have been in-situ fabricated by foam-gelcasting-freeze drying method at different temperatures. The microstructure, phase composition, and properties of the obtained ceramics were investigated. The results indicate that compared with other porous ceramics reported in the literatures, this type of ceramics exhibits excellent performance. The sample prepared at 1350 °C shows high porosity (88.6 %), low thermal conductivity (0.023 W m-1 K-1), and high compressive strength (1.48 MPa). The current study suggests that porous (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ high entropy ceramics are promising candidates for thermal insulation applications.  相似文献   

15.
《Ceramics International》2023,49(18):29729-29735
Herein, five new La2Zr2O7 based high-entropy ceramic materials, such as (La0.2Ce0.2Gd0.2Y0.2Er0.2)2Zr2O7, (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7, (La0.2Gd0.2Y0.2Er0.2Sm0.2)2Zr2O7, (La0.2Ce0.2Y0.2Er0.2Sm0.2)2Zr2O7, (La0.2Ce0.2Gd0.2Y0.2Sm0.2)2Zr2O7), were synthesized using a sol-gel and high-temperature sintering (1000 °C) method. The spark plasma sintered (SPS) (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7 pellet shows a low thermal conductivity of 1.33 W m-1 K-1 at 773 K, and it also exhibits better CaO–MgO–Al2O3–SiO2 corrosion resistance than that of Y2O3 stabilized ZrO2. It shows that (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7 has a promising application potential as a thermal barrier coating.  相似文献   

16.
La2Zr2O7 is a promising thermal barrier coating (TBC) material. In this work, La2Zr2O7 and 8YSZ-layered TBC systems were fabricated. Thermal properties such as thermal conductivity and coefficient of thermal expansion were investigated. Furnace heat treatment and jet engine thermal shock (JETS) tests were also conducted. The thermal conductivities of porous La2Zr2O7 single-layer coatings are 0.50–0.66?W?m?1?°C?1 at the temperature range from 100 to 900°C, which are 30–40% lower than the 8YSZ coatings. The coefficients of thermal expansion of La2Zr2O7 coatings are about 9–10?×?10?6?°C?1 at the temperature range from 200 to 1200°C, which are close to those of 8YSZ at low temperature range and about 10% lower than 8YSZ at high temperature range. Double-layer porous 8YSZ plus La2Zr2O7 coatings show a better performance in thermal cycling experiments. It is likely because porous 8YSZ serves as a buffer layer to release stress.  相似文献   

17.
An entropy-stabilized rare earth hafnate (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 (5RH) with defective fluorite structure was successfully prepared by the emerging ultrafast high-temperature sintering (UHS) in less than six minutes. The 5RH ceramic possessed a higher thermal expansion coefficient (11.23 ×10?6/K, 1500 °C) and extremely low thermal conductivity (0.94 W/(m·k), 1300 ℃) owing to the larger lattice distortion of high-entropy materials. After high-temperature annealing at 1500 ℃, the 5RH showed extremely sluggish grain growth characteristics and excellent high-temperature phase stability, mainly attributed to the non-equilibrium sintering characteristic of the UHS and the sluggish diffusion effect of high-entropy materials. Therefore, (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 has excellent potential as a next-generation thermal barrier coating material to replace traditional Y2O3 stabilized ZrO2. Finally, using the UHS to prepare high-entropy ceramics provides a new technique for fast-sintering and developing next-generation thermal barrier coating materials.  相似文献   

18.
La2Zr2O7 has high melting point, low thermal conductivity and relatively high thermal expansion which make it suitable for application as high-temperature thermal barrier coatings. Ceramics including La2Zr2O7, (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 and (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 were synthesized by solid state reaction. The effects of co-doping on the phase structure and thermophysical properties of La2Zr2O7 were investigated. The phase structures of these ceramics were identified by X-ray diffraction, showing that the La2Zr2O7 ceramic has a pyrochlore structure while the co-doped ceramics (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 and the (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 exhibit a defect fluorite structure, which is mainly determined by ionic radius ratio r(Aav.3+)/r(Bav.4+). The measurements for thermal expansion coefficient and thermal conductivity of these ceramics from ambient temperature to 1200 °C show that the co-doped ceramics (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 and (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 have a larger thermal expansion coefficient and a lower thermal conductivity than La2Zr2O7, and the (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 shows the more excellent thermophysical properties than (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 due to the increase of Yb2O3 content.  相似文献   

19.
To explore the mechanism of phase transformation, YTa3O9 was prepared by an integrated one-step synthesis and sintering method at 1500 °C using Y2O3 and Ta2O5 powders as starting materials. High-temperature XRD patterns and Raman spectra showed that a phase transformation from orthorhombic to tetragonal took place in YTa3O9 through the bond length and angle changes at 300–400 °C, which caused a thermal conductivity rise. To inhibit the phase transformation, a high-entropy (Y0.2La0.2Ce0.2Nd0.2Gd0.2)Ta3O9 (HE RETa3O9) was designed and synthesized at 1550 °C using the integrated solid-state synthesis and sintering method. In tetragonal structured HE RETa3O9, phase transformation was inhibited by the high-entropy effect. Furthermore, HE RETa3O9 exhibited low thermal conductivity, and its tendency to increase with temperature was alleviated (1.69 W/m·K, 1073 K). Good phase stability, low thermal conductivity and comparable fracture toughness to YSZ make HE RETa3O9 promising as a new thermal barrier coating material.  相似文献   

20.
Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C (HTZTNC) was investigated over temperature range of 1400–1600 °C. Results showed improved oxidation resistance of high-entropy carbide compared with individual carbide ceramics. In oxide layer, Ta2O5 and Nb2O5 were found to be dominant phases at 1400 °C, whereas ZrTiO4 and HfTiO4 were main phases obtained at 1500 and 1600 °C. Moreover, these complex dense oxide layer structures on the surface of HTZTNC at high temperature led to excellent oxidation resistance. The observation of Ti-depleted layer at 1500 and 1600 °C after 20 min of oxidation indicated that oxidation mechanism involved outward diffusion of titanium oxide, which was further confirmed by reoxidation experiments. In sum, these findings are promising for future development of high-entropy ultrahigh temperature ceramics with good oxidation resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号