首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《云南化工》2017,(7):48-51
以三聚氰胺(C_3H_6N_6)为前驱体,通过高温煅烧制备了g-C_3N_4光催化剂,并用微波辐射法制备了改性g-C_3N_4,用XRD、FT-IR、UV-Vis及PL等对催化剂结构进行了表征。结果表明,微波改性样品光催化活性显著提高,微波辐射7min的催化剂对20mg/L的罗丹明B在可见光下催化降解2h,降解率达到97.03%。  相似文献   

2.
以ZnCo2O4微球材料为基础材料,采用溶液分散吸附和100 oC下恒温12 h方法制备了g-C3N4负载的ZnCo2O4复合材料,并采用X-射线衍射(XRD)、扫描电镜(SEM)、光电子能谱(XPS)和固体紫外漫反射(Uv-DRS)技术对其进行了表征。ZnCo2O4与g-C3N4之间形成异质结结构,禁带宽度值为1.73 eV。在可见光的照射下,ZnCo2O4的光生电子(e‒)在异质结处的C3N4的离域π键所捕获,有效的促进了ZnCo2O4的光生电子(e‒)和光生空穴(h+)分离,ZnCo2O4的光生空穴(h+)是光催化降解四环素水溶液的主要因素。在可见光下,初始浓度为10 mg/L的四环素水溶液(C22H24N2O8)最高降解率可达到90.02 %。  相似文献   

3.
《Ceramics International》2020,46(11):18768-18777
A novel highly efficient photocatalyst composite BiFeO3/Fe3O4 has been synthesized by mechanosynthesis and applied to the degradation of Methylene Blue under visible light. Structural, optical and photocatalytic properties of the proposed photocatalyst composites are carefully investigated. The nanointerfaces, associated to ferrous Fe2+ ions of the Fe3O4 nanoparticles, improve the photocatalytic efficiency when compared with pure BiFeO3 or Fe3O4. The time required to the complete degradation of Methylene Blue solution is 40 min for the sample with 20% of Fe3O4 which is more than 7 times faster than the time required using BiFeO3 alone. Moreover, with the addition of H2O2 a complete degradation is achieved just after 10 min, which is faster than any other photocatalytic reaction reported for BiFeO3-based materials. This enhancement is assumed to be related to an electron drain process due to the difference between energy levels of the conduction bands of BiFeO3 and Fe3O4 combined with the direct Fenton-like process associated with the Fe2+ ions of the composites.  相似文献   

4.
5.
殷楠  刘婵璐  张进 《无机盐工业》2020,52(10):161-165
以三聚氰胺和四水合钼酸铵为前驱体,采用水热法制备了MoO3/g-C3N4复合光催化剂。利用X-射线衍射仪(XRD)、红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)及紫外-可见漫反射仪(DRS)等对制备的样品进行了表征。表征结果显示,棒状的三氧化钼负载在层状C3N4表面,复合材料的光吸收能力有一定的增强。材料可见光催化降解亚甲基蓝(MB)溶液的实验表明,三氧化钼和g-C3N4所复合产生的异质结具有较好的吸收光强度及催化降解性能,尤其是5%(质量分数)MoO3/g-C3N4复合材料光催化降解率最好,达到95.7%,高于纯三氧化钼和g-C3N4。自由基与空穴捕获实验表明,·O2-是光催化反应中的主要活性物种。MoO3/g-C3N4复合材料在4个循环周期内表现出了优异的稳定性。  相似文献   

6.
As a potential material applied in the photocatalytic field, graphitic carbon nitride (g-C3N4) has attracted extensive attention for its advantages of visible-light response, excellent thermodynamic, and chemical stability. However, the photocatalytic performance of g-C3N4 is still limited in practical applications. Here, using a facile thermal polymerization method, unique W-doped foam g-C3N4 was synthesized to realize enhanced photocatalytic performance for the degradation of Rhodamine B and the evolution of hydrogen. Compared with pure foam g-C3N4, tungsten doping modified the foam g-C3N4 and efficiently improved its specific surface area, leading to enhanced photocatalytic performance. The average rate of hydrogen evolution was as high as 8818 μmol·h−1·g−1, which was better than most photocatalysts. This work proposes a new effective method and idea to modify g-C3N4 for improving its photocatalytic performance.  相似文献   

7.
以乙酸锌、氢氧化钠和g-C3N4粉末为原料,并添加十二烷基苯磺酸钠粉末作为表面活性剂,采用室温固相研磨法制备了ZnO/g-C3N4光催化剂。并研究了复合材料的光催化性能。研究结果表明,经固相研磨后,会形成ZnO/g-C3N4复合材料,g-C3N4充分细化成薄片状。添加十二烷基苯磺酸钠粉末促进了g-C3N4发生相变。当g-C3N4含量较低时,产物的形貌呈现为纳米花,实际上是因为大量的氧化锌纳米片负载到g-C3N4片上。当g-C3N4含量较高时,产物为二维纳米片,由氧化锌纳米颗粒负载到g-C3N4片上。合成的ZnO/g-C3N4复合材料对亚甲基蓝表现出良好的可见光催化活性。  相似文献   

8.
二氧化钛具有优异的光电转换及物化性能,是半导体光催化材料的研究热点,广泛用于有机污染物降解研究。但二氧化钛禁带宽度较大,只能吸收紫外光辐射,太阳光利用率低,且二氧化钛的量子效率低。综述金属掺杂、非金属掺杂、共掺杂、半导体复合-异质结和染料敏化二氧化钛改性方法,拓宽TiO_2的光响应范围,抑制载流子复合,提高光催化活性和能量转换效率,提高有机污染物降解率,实现可见光降解。  相似文献   

9.
Photocatalytic degradation is one of the most promising remediation technologies in terms of advanced oxida-tion processes (AOPs) for water treatment. In this study, novel graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) composites were synthesized by a facile sonication method. The physicochemical properties of the photocatalyst with different mass ratios of g-C3N4 to TiO2 were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 sorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and UV–vis DRS. The photocatalytic performances were evaluated by degradation of methylene blue. It was found that g-C3N4/TiO2 with a mass ratio of 1.5:1 exhib-ited the best degradation performance. Under UV, the degradation rate of g-C3N4/TiO2 was 6.92 and 2.65 times higher than g-C3N4 and TiO2, respectively. While under visible light, the enhancement factors became 9.27 (to g-C3N4) and 7.03 (to TiO2). The improved photocatalytic activity was ascribed to the interfacial charge transfer between g-C3N4 and TiO2. This work suggests that hybridization can produce promising solar materials for envi-ronmental remediation.  相似文献   

10.
为提高石墨相氮化碳(g-C3N4)的光催化性能,采用3D花状ZIF-Co与g-C3N4混合热处理的方法制备了3D花状Co3O4/g-C3N4复合光催化剂,并将其用于光催化降解罗丹明B模拟染料废水。结果表明:当ZIF-Co与g-C3N4的质量比为5%时,制备的Co3O4/g-C3N4的光催化性能最佳,在可见光下照射30 min,其对罗丹明B的降解率可达90%以上,且该催化剂的重复稳定性好。在降解罗丹明B的过程中活性基团的作用顺序为·O2->h+>·OH。  相似文献   

11.
《Ceramics International》2020,46(14):21958-21977
The fabrication of nanocomposite photocatalytsts with excellent photocatalytic activity is an important step in the improved degradation of organic dyes. A series of nanocomposite photocatalysts was synthesized with g-C3N4 and ZnO loading contents of 10, 20 and 30%. The nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS). The optical band gaps of g-C3N4, ZnO and ZnAl2O4 were about 2.79, 3.21 and 3.55 eV, respectively. Methylene blue (MB) was degraded over the prepared photocatalysts under UV irradiation. Photocatalytic activity was about 9.1 and 9.6 times higher, respectively, on 20%g-C3N4/ZnAl2O4 and 20%ZnO/ZnAl2O4 nanocomposite photocatalysts than on pure ZnAl2O4 spinel powders. Recycling experiments showed that 20%g-C3N4/ZnAl2O4 and 20%ZnO/ZnAl2O4 nanocomposite photocatalysts exhibited good stability after five cycles of use.  相似文献   

12.
采用浸渍-热聚合法制备CDs/ZnO/g-C3N4复合材料,考察其对罗丹明B的光降解效率。利用 XRD、TEM、XPS、UV-Vis DRS、FI-IR等手段对催化剂进行表征和评价。结果表明:CDs/ZnO/g-C3N4仍保持石墨相g-C3N4的晶型结构,三元组份相互协同作用使CDs/ZnO/g-C3N4表现出优异的光催化性能,其降解罗丹明B的效果优于单体g-C3N4、ZnO及ZnO/g-C3N4,脱色率可达到70%左右。  相似文献   

13.
14.
A series of g-C3N4/ZnAl2O4 composites were prepared using a conventional calcination method and the heterostructures were systematically characterized. It was found that the combination of g-C3N4 with ZnAl2O4 significantly improve their photocatalytic activities. The optimum photocatalyst of composite is at 5% (wt%) of ZnAl2O4, whose degradation efficiency for methyl orange (MO) was 96% within 120 min under visible-light irradiation. The formation of heterojunction between g-C3N4 and ZnAl2O4 can facilitate efficient charge separation of photogenerated electron-hole pairs, which were confirmed by electrochemical impedance spectroscopy (EIS). As a result, the photocatalytic properties of composites were enhanced.  相似文献   

15.
《Ceramics International》2021,47(22):31073-31083
Pluronic 31R1 surfactant and MCM-41 silica were used to fabricate mesoporous Ag2O/g-C3N4 heterostructures with improved surface areas. The fabricated mesoporous nanocomposite was used to photo oxidize ciprofloxacin. The TEM images of Ag2O/g-C3N4 indicated a uniform dispersion of spherical approximately 4-nm Ag2O nanoparticles on g-C3N4. The mesoporous 0.9% Ag2O@g-C3N4 heterostructure exhibited 100% efficiency in ciprofloxacin oxidation within 60 min when compared with the 25% efficiency in 120 min of pure mesoporous Ag2O and 10% efficiency in 120 min of pure g-C3N4. The highest ciprofloxacin oxidation efficiency achieved was 100%, which was four and ten times better than those of Ag2O and g-C3N4, respectively. This superior performance of the mesoporous Ag2O/g-C3N4 was attributed to the high dispersion of nano-sized mesoporous Ag2O particles on the g-C3N4 surface, narrow bandgap, and significantly high surface areas. The powerful interaction between Ag2O and g-C3N4 ensured robust durability of Ag2O/g-C3N4 heterostructures, which is evident in the fact that five recycling trials of the photocatalyst rendered a minimal loss of efficiency.  相似文献   

16.
Morphology modulation of photocatalyst has been demonstrated to be a crucial strategy for improving the catalytic performance in solar energy conversion system. Here we systematically investigated the influence of the solvent-dependent morphology evolution of Zn2GeO4 phase on the photocatalytic efficiency of the as-prepared g-C3N4/Zn2GeO4 composites. The morphologies of Zn2GeO4 were rationally tuned from flower-like nanosheets to length-controllable nanorods, and microclusters assembled from microrods through regulating the solution polarity of different organic solvents. Accordingly, the Zn2GeO4 sample prepared in ethylene glycol (EG) with long rod-like morphology and integrated with g-C3N4, abbreviated as g-C3N4/Zn2GeO4(1:1)-EG, exhibited the best visible-light absorption ability and the highest efficiency. The synergetic effect of the long rod-like Zn2GeO4 phase with many exposed (110) crystalline facets and g-C3N4 accelerates the separation and interface transportation of photoexcited charge carriers, as confirmed by photocurrent measurements. The MB degradation mechanism was also proposed to clarify the charge-transfer process and the improved photodegradation activity. This study offers an experimental basis for understanding the significance of morphology control on rational design of photocatalysts with improved performance.  相似文献   

17.
以一步法原位合成了g-C3N4/ZnO异质结复合材料,评价其在可见光下降解亚甲基蓝(MB)的光催化活性,并探讨了g-C3N4/ZnO的光催化机制。运用XRD、FT-IR、SEM和UV-Vis DRS对所合成的复合材料进行表征。结果表明,经复合后g-C3N4和ZnO紧密结合,构建了异质结,提高了光生电子-空穴的分离效率,并且在可见光区表现出较强的光响应性;当g-C3N4的质量分数为19%时,复合材料降解MB的反应速率常数为0.0206min-1,是纯g-C3N4的3.8倍。催化剂重复使用5次,仍保持较高的催化活性。  相似文献   

18.
以酵母为生物模板,通过水热-牺牲模板法制备得到了花簇状g-C3N4/Bi2MoO6复合微球,利用XRD、SEM、TEM、FT-IR、DRS、光电流响应以及氮气吸附-脱附等手段对样品的晶体结构、微观形貌、光吸收和比表面积等性能进行表征,并对样品可见光催化降解亚甲基蓝(MB)模拟染料废水的性能和机理进行探讨。实验结果表明:水热-牺牲模板法可实现g-C3N4与Bi2MoO6在生物模板表面的成功复合,样品分散性良好,微球直径约为8μm,表面呈花簇状,比表面积达11.6007m2/g。在可见光下复合微球对亚甲基蓝模拟染料废水表现出较高的光催化降解活性,当催化剂添加量为1g/L,可见光照射120min后,初始浓度为15mg/L的亚甲基蓝废水降解率高达96%以上。机理分析证实花簇状复合微米球表面g-C3N4与Bi2MoO6形成的Z型异质结有效降低了电子-空穴的复合率,显著提升了对模拟染料废水的可见光催化性能。  相似文献   

19.
《Ceramics International》2020,46(4):4265-4273
Photoactive heterostructures containing CuxS/ZnO/TiO2 have been obtained by spray pyrolysis deposition followed by post-deposition thermal treatment. The ZnO middle layer morphology was tailored by using chemical additives during the deposition. The samples have crystalline structure with average crystallite size around 80 Å for metal oxides and 90 Å for CuxS. The roughness varies from 27.5 nm for CuxS/dZnO/TiO2 to 33.6 nm for CuxS/pZnO/TiO2 samples. The wettability properties were tested based on the contact angle measurements. The highest surface energy value (106.4 mN/m) corresponding to CuxS/pZnO/TiO2 with 30 min UV irradiation, with a predominant polar component of 85.3 mN/m. The photocatalytic efficiency under UV–Vis light irradiation was evaluated using methylene blue and phenol as pollutants. The highest photocatalytic values (93.4% for methylene blue and 72.3% for phenol) were obtained for CuxS/pZnO/TiO2 heterostructure with successive 30 min UV irradiation at 2 h intervals. The mineralization efficiency was tested using total organic carbon analysis and the results are slightly lower compared with photocatalytic efficiency.  相似文献   

20.
Novel ZnO/ZnAl2O4 nanocomposites with ZnAl2O4 nanoparticles homogeneously dispersed inside a network of ZnO are fabricated by thermal treatment of a single‐source precursor of ZnAl‐layered double hydroxides (ZnAl‐LDHs) at 800°C. The effects of the Zn/Al molar ratio of the LDH precursors on the structure, composition, morphology, textural as well as UV‐absorbing properties and photocatalytic activities of the nanocomposites are investigated in detail. The results show that the ZnO/ZnAl2O4 nanocomposites derived from the ZnAl‐LDHs precursors have superior photocatalytic performances to either single phase ZnO or similar ZnO/ZnAl2O4 samples fabricated by chemical coprecipitation or physical mixing method. The heterojunction nanostructure and the strong coupling between the ZnO and ZnAl2O4 phase derived from ZnAl‐LDHs precursors are proposed to contribute the efficient spatial separation between the photo‐generated electrons and holes, which can concomitantly improve the photocatalytic activities. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号