首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
《Ceramics International》2020,46(3):3015-3022
Ho3+ and Yb3+ codoped bismuth titanate (BTO) composite powders with infrared to visible upconversion luminescence (UCL) function were prepared by SGC method. The effects of Ho3+ and Yb3+ doping content on the structure and property were investigated for BTO: xHo, 0.2 Yb (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) and BTO: 0.02Ho, yYb (y = 0.1, 0.2, 0.3, 0.5, 0.7, 0.9) samples. All the samples include three bismuth titanate phases (Bi4Ti3O12, Bi2Ti2O7, and Bi20TiO32), and the phase proportion can be tuned by changing Ho3+ and Yb3+ doping content. These powders are well crystalized with honeycomb-like microscopic structure, and with good absorption for 233 nm, 310 nm and 975 nm wavelength. The band gap can be tuned from 3.53 eV to 4.03 eV when increasing Yb3+ content from y = 0 to y = 0.9. A strong 530–580 nm green emission band and a relative weak 630–690 nm red one corresponding to Ho3+: 5S25I8 and 5F55I8 transitions appear in the UCL spectra for all the BTO: Ho, Yb samples when pumped at 980 nm. The emission intensities can well be tuned with various Ho3+ and Yb3+ content. The optimal UCL was obtained in BTO: 0.02Ho, 0.5 Yb for all the prepared samples. The energy transfer mechanism is analyzed by building a two-photon energy transfer model, which is proved by the relationship between emission intensities and pumping power measurement. The concentration quenching of Ho3+ is caused by cross relaxation of CR1 and CR2 (Ho: 5F4, 5S2 + 5I85I4 + 5I7) and by CR3 (Ho: 5F4, 5S2 + Yb: 2F7/2 → Ho: 5I6 + Yb: 2F5/2) for Yb3+ quenching. The mean luminescence lifetime (τm) from Ho: 5S2 decreases monotonously with the increase of Ho3+ and Yb3+ content.  相似文献   

2.
Hexagonal Ho3+ doped NaYbF4 phosphors are synthesized via a hydrothermal method. The influence of Gd3+ and Ce3+ content on the phase structure and upconversion (UC) emission of NaYbF4 phosphors is investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UC spectra. The results of XRD and TEM indicate that the solubility of Ce3+ in hexagonal NaYbF4 is low due to the large difference of ionic radius between Ce3+ and Yb3+. With help of Gd3+ co-doping (15 mol%), pure hexagonal NaYbF4 phosphors with high doping concentration of Ce3+ (15 mol%) and small crystal size are obtained. When excited by a 980 nm laser diode, Ho3+ doped hexagonal NaYb0.85Gd0.15F4 phosphors exhibit strong green UC emission at 540 nm and weak red one at 646 nm. UC luminescence tuning from green emission to red emission is observed in hexagonal Ho3+ doped NaYb0.85Gd0.15F4 phosphors by co-doping with Ce3+ ions. The UC luminescence tuning phenomenon is attributed to two resonant energy transfer processes of 5S2/5F4(Ho3+)+2F5/2(Ce3+)→5F5(Ho3+)+5F7/2(Ce3+) and 5I6(Ho3+)+2F5/2(Ce3+)→5I7(Ho3+)+5F7/2(Ce3+) between Ho3+ and Ce3+, which suppress the green emission at 540 nm, while promote the red one at 646 nm.  相似文献   

3.
《Ceramics International》2017,43(5):4330-4334
Yb2O3:Ho3+ nanocrystalline powders were synthesized through a solid state reaction method. X-ray diffraction analysis and field emission scanning electron microscopy were used to analyze the phase composition and morphology of the powders. Then under the 980 nm excitation of laser diode, the fluorescence of the crystals was studied via a fluorescence spectrometer. The green and red emissions centered on 551 and 668 nm were observed, and the green band dominated the emission spectrum. The effect of the concentration of Ho3+ on the upconversion luminescence intensity was discussed and the possible upconversion emission mechanism was explained. It indicates that like other metal oxide nanoparticles, Yb2O3 could also be a potential host material for doping to prepare the upconversion phosphor.  相似文献   

4.
A series of Er3+/Yb3+ co-doped Cs3GdGe3O9 (CGG) phosphors were prepared by solid-phase sintering method, and the microstructure and upconversion luminescence (UCL) properties were tested by variable-temperature X-ray diffractometry and variable-temperature spectrometer. Abnormal UCL phenomena were found, which include UCL intensity continuously increasing under 980 nm laser continuous irradiation and UCL thermal enhancement. After 10 min of continuous irradiation by 980 nm laser at 513 K, the UCL intensity increased 2.91 times compared with the initial UCL intensity. The phenomenon is due to the electron releasing of host defects. The green UCL intensity of CGG:0.1Er3+/0.2Yb3+ decreases at 303–423 K and increases at 423–723 K, which reaches 13.23 times compared with that at 423 K. The phenomenon is due to Er3+–Yb3+ distance change by temperature and phonon-assisted transitions. In addition, the absolute temperature sensitivities of samples are calculated by luminescence intensity ratio technology, the maximum absolute sensitivity of CGG:0.1Er3+/0.4Yb3+ is 0.00691 K−1 at 546 K, and the maximum relative sensitivity of CGG:0.1Er3+/0.1Yb3+ is 0.01224 K−1 at 303 K. These results indicate that CGG:Er3+/Yb3+ phosphors can be used as a high-temperature optical thermometer.  相似文献   

5.
Yb3+/Er3+codoped La10W22O81 (LWO) nanophosphor rods have been successfully synthesized by a facile hydrothermal assisted solid state reaction method, and their upconversion photoluminescence properties were systematically studied. X-ray diffraction patterns revealed that the nanophosphors have an orthorhombic structure with space group Pbcn (60). A microflowers-like morphology with irregular hexagonal nanorods was observed using field emission scanning electron microscopy for the Yb3+(2 mol%)/Er3+(2 mol%):LWO nanophosphor. The shape and size of the nanophosphor and the elements along with their ionic states in the material were confirmed by TEM and XPS studies, respectively. A green upconversion emission was observed in the Er3+: LWO nanophosphors under 980 nm laser excitation. A significant improvement in upconversion emission has been observed in the Er3+: LWO nanophosphors by increasing the Er3+ ion concentration. A decrease in the upconversion emission occurred due to concentration quenching when the doping concentration of Er3+ ions was greater than 2 mol%. An optimized Er3+(2 mol%): LWO nanophosphor exhibited a strong near infrared emission at 1.53 μm by 980 nm excitation. The green upconversion emission of Er3+(2 mol%): LWO was remarkably enhanced by co-doping with Yb3+ ions under 980 nm excitation because of energy transfer from Yb3+ to Er3+. The naked eye observed this upconversion emission when co-doping with 2 mol% Yb3+. In order to obtain the high upconversion green emission, the optimized sensitizer concentration of Yb3+ ions was found to be 2 mol%. The upconversion emission trends were studied as a function of stimulating laser power for an optimized sample. Moreover, the NIR emission intensity has also been enhanced by co-doping with Yb3+ ions due to energy transfer from Yb3+ to Er3+. The energy transfer dynamics were systematically elucidated by energy level scheme. Colorimetric coordinates were determined for Er3+ and Yb3+/Er3+: LWO nanophosphors. The energy transfer mechanism was well explained and substantiated by several fluorescence dynamics of upconversion emission spectra and CIE coordinates. The results demonstrated that the co-doped Yb3+(2 mol%)/Er3+(2 mol%): LWO nanophosphor material is found to be a suitable candidate for the novel upconversion photonic devices.  相似文献   

6.
A series of novel SrLu2O4: x Ho3+, y Yb3+ phosphors (x=0.005‐0.05, y=0.1‐0.6) were synthesized by a simple solid‐state reaction method. The phase purity, morphology, and upconversion luminescence were measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. The doping concentrations and sintering temperature were optimized to be x=0.01, y=0.5 and T=1400°C to obtain the strongest emission intensity. Under 980 nm laser diode excitation, the SrLu2O4:Ho3+, Yb3+ phosphors exhibit intense green upconversion (UC) emission band centered at 541 nm (5F4,5S25I8) and weak red emission peaked at 673 nm (5F55I8). Under different pump‐power excitation, the UC luminescence can be finely tuned from yellow‐green to green light region to some extent. Based on energy level diagram, the energy‐transfer mechanisms are investigated in detail according to the analysis of pump‐power dependence and luminescence decay curves. The energy‐transfer mechanisms for green and red UC emissions can be determined to be two‐photon absorption processes. Compared with commercial NaYF4:Er3+, Yb3+ and common Y2O3:Ho3+, Yb3+ phosphors, the SrLu1.49Ho0.01Yb0.5O4 sample shows good color monochromaticity and relatively high UC luminescence intensity. The results imply that SrLu2O4:Ho3+, Yb3+ can be a good candidate for green UC material in display fields.  相似文献   

7.
Multicolor upconversion luminescence materials show significantly applications in materials science. In this paper, the novel Yb3+-sensitized Na3La(VO4)2 upconversion luminescence crystals are synthesized by the solid-state reaction method. Three primary colors upconversion luminescence are successfully achieved in Na3La(VO4)2:Yb3+,Tm3+, Na3La(VO4)2:Yb3+,Er3+, and Na3La(VO4)2:Yb3+,Ho3+ crystals excited by the single 980 nm LD. Multicolor upconversion luminescence can be obtained by simply adjusting the combination ratios of these three samples. Luminescence mechanisms of the Yb3+-sensitized system are discussed in detail. In the Na3La(VO4)2 host material, the Yb3+/Ho3+ codoped system exhibits unusual red upconversion luminescence based on the short decay time of Ho3+ ion 5I6 level, which provides the possibility of three primary color luminescence under 980 nm excitation.  相似文献   

8.
Intense 2.0 μm emission of Ho3+ has been achieved through Yb3+ sensitization in fluorogermanate glass‐ceramic (GC) containing LaF3 pumped with 980 nm laser diode (LD). The observation of concurrent emissions at 538, 650, and 1192 nm points to the additional deexcitation routes based on infrared‐to‐visible upconversion processes and Ho3+:5I65I8 radiative transition. Comparative investigations of photoluminescent spectra and decay curves have indicated the effective role of Ce3+ ions in enhancing the 2.0 μm fluorescence along with suppressing the occurrence of these concurrent emissions. This would offer a promising approach to develop compact and efficient 2.0‐μm laser systems.  相似文献   

9.
《Ceramics International》2019,45(10):13235-13241
Yb3+:Ho3+ co-doped Gd2O3 nanoparticles were successfully synthesized by pulsed laser ablation in water under different laser energy. The phase structure, morphology, crystallization and upconversion photoluminescence properties of obtained samples were investigated using X-Ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and photoluminescence spectra. The mechanism of the upconversion process was discussed based on the energy level diagram and power dependent upconversion emission. Upconversion mechanisms and thermal effects caused by absorption of excitation laser were discussed. Temperature dependent green and red emissions of Yb3+:Ho3+ co-doped Gd2O3 nanoparticles under the excitation of 980 nm were investigated in the low temperature range of 130 K–280 K. Non-radiative decay rate theory was used to explain the difference of quenching rates of green and red emissions. A further study on temperature sensing properties based on fluorescence intensity ratio (FIR) of green and red emissions was carried out. The FIR as a function of temperature can be well fitted by the model based on the thermal quenching theory. The relative sensitivity reaches its maximum value of 0.804% K−1 at 216 K.  相似文献   

10.
Mid-infrared lasers have important applications in infrared countermeasures, sensing, environmental monitoring, biomedicine, and many military and civilian fields. In this work, an intense emission at 2.9 μm from Yb3+/Ho3+ co-doped TeO2-Ga2O3-ZnO (TGZ) glass was reported. The 2 μm, 1.2 μm and visible emissions were also performed to understand the competitive luminescent mechanism. With the increase in Yb3+ concentration, all the emissions of Ho3+ increased, whereas the emission of Yb3+ decreased due to the phonon-assisted energy transfer from Yb3+ to Ho3+. The lifetimes of optimized 3 mol% Yb2O3 and 1 mol% Ho2O3 co-doped TGZ glass, which has the maximum emission intensity, are 548 μs and 1.7 ms at 2.9 and 2 μm, respectively. The Judd–Ofelt intensity parameters, absorption, and emission cross sections were calculated to evaluate the mid-infrared fluorescence properties of this new glass matrix material. The gain coefficients show that the 2 and 2.9 μm laser gain can be realized by small pump energy, indicating that this glass is a promising medium for the mid-infrared optical fiber laser.  相似文献   

11.
《Ceramics International》2022,48(17):24649-24655
Generally, lanthanum ions doped positive expansion and negative expansion materials exhibit thermal quenching and enhancement of upconversion luminescence (UCL), respectively. Combining the UCL characteristics of positive expansion and negative expansion lattices is of importance for developing efficient temperature sensing systems. Here, positive expansion TiO2:Yb3+, Er3+ three dimensionally ordered macroporous film was prepared by the template-assisted approach, and the Yb2W3O12: Er3+ solution was filled into the TiO2: Yb3+, Er3+ three dimensionally ordered macroporous film. After secondary sintering, the shell of negative expansion Yb2W3O12: Er3+was formed on the surface of TiO2:Yb3+/Er3+ core. Under 980 nm excitation, the red and green UCL is predominate for the spectra of TiO2:Yb3+/Er3+ core and Yb2W3O12: Er3+ shell, respectively. With the measurement temperature increasing, the green UCL from negative expansion Yb2W3O12: Er3+ shell increases, while the red UCL from positive expansion TiO2:Yb3+, Er3+ core decreases. The performance of temperature sensing was characterized by the monitoring the UCL intensity ratio between 525 nm and 660 nm. The temperature sensitivity is about 1.12% K?1, which is larger than that of thermally coupled FIR technology. We believed that the present work is instructive for developing new generation temperature sensor.  相似文献   

12.
《Ceramics International》2022,48(10):13960-13969
The digadolinium tellurite phosphors of Gd2Te4O11(GTO):Yb3+/Er3+ have been successfully synthesized as upconversion luminescence (UCL) materials via one-step hydrothermal method. The crystal structure, morphology, and upconversion luminescence property were systematically characterize by XRD, SEM, and spectroscopy techniques. The Rietveld refinements of crystal structure were carried out on the XRD patterns and the feature of crystal structure was analyzed. Under the 980 nm NIR excitation, these materials showed very bright upconverted emissions. The concentrations of Yb3+ and Er3+ were optimized and the strongest upconverted emissions were achieved in the GTO:15%Yb3+/1%Er3+. The possible energy transfer mechanism of UCL was proposed based upon the analysis of power-dependent UCL and fluorescence kinetics. Furthermore, the fluorescence intensity ratio (FIR) derive from the two thermally coupled energy levels (2H11/2 and 4S3/2) of Er3+ was employed as indicator for temperature measurement. The maximum absolute sensitivity can be achieved to be 7.34 × 10?3 K?1 at 501 K. This material exhibited good reliability and repeatability in optical temperature measurement, which could be a novel promising candidate for noncontact temperature sensors.  相似文献   

13.
《Ceramics International》2019,45(11):14205-14213
Monoclinic phase of BaY2F8:0.2Yb3+, xHo3+ (x = 0.005, 0.01, 0.02, 0.05 and 0.1 mol) and BaY2F8:yYb3+, 0.02Ho3+ (y = 0.01, 0.02, 0.05, 0.1 and 0.2 mol) phosphors were prepared by a facile precipitation method. Rietveld analysis was employed to carry out the structural refinement. The upconversion (UC) luminescence properties of BaY2F8:Yb3+, Ho3+ phosphor were investigated under near infra-red (NIR) excitation and the influence of dopant concentration on their spectra was also accessed. The possible UC processes and the energy transfer mechanisms between Yb3+ and Ho3+ were discussed on the basis of UC decay curves and the UC spectra obtained from a laser-pump power variation. The thermal stability of the BaY2F8:0.2Yb3+, 0.02Ho3+ phosphor was studied in the range of 30–300 °C. The color coordinates of the phosphor were located in the green region with very high color purity.  相似文献   

14.
《Ceramics International》2015,41(6):7796-7802
The perovskite proton conductors BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x=0.9, 0.94, 0.98, 1.0, 1.03, 1.06, and 1.1) have been successfully prepared by the conventional solid state reaction route. X-ray diffraction (XRD) patterns of the samples indicate that BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x≥1.0) samples possess a single phase orthorhombic structure, but a secondary phase (Y,Ce)O2−δ exists in BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x<1.0) samples. SEM photographs show that the grain size of BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ increases and the porosity decreases with Ba2+ content varying from x=0.9 to 1.1. Because of ZnO addition as sintering aid, the sintering temperature of the samples reduces from 1550 °C to 1250 °C. The chemical stability of the samples against CO2 decreases with the increase in Ba content from x=0.9 to 1.1. All the samples show a excellent stability against water vapor at 850 °C. The conductivities of the samples increase and the activation energies reduce with the increase in Ba content. The present results suggest that it is very important to control the stoichiometry of cations to obtain desired perovskite type high temperature proton conductors.  相似文献   

15.
Spectral conversion technology based on NaYF4:Yb3+, Er3+ upconversion nanoparticles was extensively used to improve photovoltaic conversion efficiency of solar cells. However, the response mismatch between absorption of semiconductors and upconversion luminescence (UCL) limits the application of spectral conversion technology. Nonstoichiometric WO2.72 nanoparticles display the broad absorption from visible to near-infrared region due to the presence of oxygen vacancy, which is overlapped with the UCL of NaYF4:Yb3+, Er3+ nanoparticles. Thus, the combination between NaYF4:Yb3+, Er3+ nanoparticles, and nonstoichiometric WO2.72 provides a possibility for designing a novel UCL spectral converted solar cells. In this work, composite film consisted of NaYF4:Yb3+, Er3+ nanoparticles, and WO2.72 nanofibers was prepared. The UCL of NaYF4:Yb3+, Er3+/WO2.72 film was decreased in contrast to pure NaYF4:Yb3+, Er3+ nanoparticles due to energy transfer from NaYF4:Yb3+, Er3+ nanoparticles to WO2.72 nanofibers. The NaYF4:Yb3+, E3+/WO2.72film exhibits the photocurrent generation upon the 980 nm excitation. This novel UCL spectral converted solar cells based on the broad absorption of defects in the WO2.72 host will provide a novel view for photovoltaic devices.  相似文献   

16.
《Ceramics International》2016,42(4):4642-4647
Tunable up-conversion luminescent material KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) has been synthesized by a typical hydrothermal process. Under 980 nm laser diode (LD) excitation, the emission intensity and the corresponding luminescence colors of KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) have been investigated in detail. The energy transfer from the Yb3+ sensitizer to Ho3+, Er3+ and Tm3+ activators plays an important role in the development of color-tunable single- phased phosphors. The emission intensity keep balance through control of the Ho3+ co-doping concentrations, white light was experimentally shown at KY(MoO4)2: 20 mol% Yb3+, 0.8 mol% Er3+, 0.5 mol% Tm3+, 1.0 mol% Ho3+ phosphor with further calcination at 800 °C for 4 h under 980 nm laser excitation. The color tunability, high quality of white light and high intensity of the emitted signal make these up-conversion (UC) phosphors excellent candidates for applications in solid-state lighting.  相似文献   

17.
Upconversion (UC) optical thermometers using the fluorescence intensity ratio (FIR) technique arising from the thermally coupled energy levels (TCLs) are still suffering from low sensitivity owing to the restriction of small energy gap. In the present study, a strategy to strive for superior temperature sensitivity and signal discriminability is employed with the help of non-thermally coupled energy levels (NTCLs). A novel tri-doped Ba3Y4O9: Ho3+/Tm3+/Yb3+ phosphor with rhombohedral symmetry was successfully prepared via a solid-state reaction method, and the temperature sensing performance was evaluated by analyzing temperature-dependent upconversion emission spectra. The emission intensities of both Ho3+ and Tm3+ activators can be almost completely restored to their original values when the temperature of the sample is cooled to room temperature. The temperature-dependent FIR between NTCLs can be fitted well by a derived three-term equation with the correlation coefficient above 99.6%, and the FIR of NTCLs exhibits high temperature sensitivity over a wide temperature range owing to the different temperature responses of the NTCLs. The maximum absolute sensitivity SA and relative sensitivity SR values reaches as high as 0.0552?K?1 and 1.49% K?1, respectively, which are much higher than those of the previously reported bulk UC optical temperature sensing materials. Moreover, the emission bands of NTCLs are well separated, which endows the material a good signal discriminability for temperature detection. Excellent temperature sensing performance is also demonstrated in Er3+/Tm3+/Yb3+ tri-doped Ba3Y4O9, evidencing the validity of this strategy. These results indicate that the present UC materials can be potential candidates for optical temperature sensors, and the present strategy will provide a thought for developing other innovative UC temperature sensing materials.  相似文献   

18.
《Ceramics International》2017,43(8):6333-6339
As alternatives to Yb3+-sensitized up-conversion (UC) materials excited at 980 nm, Nd3+-sensitized UC phosphors irradiated by 808 nm have been used to decrease the absorption of water and alleviate the overheating effect in vivo biological application. Intense red and green UC emissions from 5F55I8 and 5F4/5S25I8 transitions of Ho3+ appeared in Nd3+/Yb3+/Ho3+ tri-doped NaLa(MoO4)2 through successive energy transfer Nd3+→Yb3+→Ho3+ under 808 nm excitation, in which Yb3+ ions were proven to be the energy transfer bridge between Nd3+ and Ho3+ by lifetime measurement. The variable emission color and intensity ratios of red to green emissions were realized by adjusting the doping concentration of Yb3+, pulse width of the excitation laser and the addition of Ce3+ ion, which depends on the different population pathways to the green and red emitting states of Ho3+. The chromaticity modulation mechanisms of these approaches were proposed, which provides a feasible strategy to tune the UC emission color.  相似文献   

19.
To address the existing gap in the literature of upconversion studies involving thoria, samples of thoria doped with Ho3+-Yb3+, Er3+-Yb3+, and Tm3+-Yb3+ were synthesized following epoxide gel method and were characterized. Fluorite structure of the doped samples was evident for the calcined samples from the corresponding xerogels as noticed in their powder X-ray diffraction patterns. The presence of a sharp band near 460 cm−1 in the Raman spectra of all these samples supported the results from diffraction experiments. Intraconfigurational f-f transitions of Ho3+, Er3+, and Tm3+ were present in the UV-visible absorbance spectra of these samples. Both normal emission and upconversion emission from these samples have been studied. Emissions in all three basic colors were observed in the upconversion emission spectra. Two-photon process was found to be responsible for the upconversion in these systems. Decay time measurements for these emissions were analyzed. This synthetic process was further extended to determine the extent of dissolution of heavier lanthanides and found that up to 50 mol% of Ho3+, Er3+ and 60 mol% of Tm3+, Yb3+ could be dissolved retaining fluorite structure. Creation of oxygen vacancies for these heavily doped specimens was quite encouraging and it could be useful as solid electrolytes in fuel cells.  相似文献   

20.
In the paper, the upconversion luminescence of 70GeO2–30[Ga2O3–BaO–Na2O] glass system co-doped with Yb3+/Tm3+ ions was investigated. Strong blue emission at 478 nm corresponding to the transition 1G4 → 3H6 in thulium ions was measured under the excitation of 976-nm diode laser. The dependence of the upconversion emission upon the thulium ion concentration was studied to determine the optimal conditions of energy transfer between energy levels of active dopants. The most effective energy transfer Yb3+ → Tm3+ was obtained in glass co-doped with molar ratio of dopant 0.7 Yb2O3/0.07 Tm2O3. The increase in thulium concentration more than 0.07 mol% results in the reverse energy transfer from Tm3+ → Yb3+, which leads to rapid quenching of the luminescence line at the wavelength 478 nm. In germanate glass co-doped with 0.7Yb2O3/0.07Tm2O3, the longest lifetime of 1G4 level equal 278 μs was achieved. The presented results indicate that elaborated germanate glass co-doped with Yb3+/Tm3+ ions is a promising material that can be used to produce fiber lasers and superluminescent fiber sources generating radiation in the visible spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号