首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subsurface energy storage in depleted petroleum reservoirs is a promising technique to balance and optimize the utilization of energy resources. In this work, we numerically explore the possibility of storing excessive hydrogen gas in depleted unconventional gas reservoirs. Our study is a multiscale analysis. From the molecular (pore) scale, we investigate the thermodynamics and transport mechanism of the hydrogen gas in the nanopores of the unconventional reservoirs. Then based on the results of the pore scale, we conduct reservoir-scale simulations to quantitatively investigate the preferred cycling pressure, the effective fraction of cushion gas and the amount of storage capacity of unconventional reservoirs. We have discovered that, compared to conventional gas reservoirs, hydrogen stored in unconventional reservoirs maintains higher purity because of the differential adsorption effect of the nanopores. This feature makes depleted unconventional gas reservoirs appealing candidates for underground storage of the hydrogen gas.  相似文献   

2.
Renewable and carbon free energy relates to the sustainable development of human beings while hydrogen production by renewables and hydrogen underground storage ensure the stable and economic renewable energy supply. A hybrid energy system combining hydrogen production by offshore wind power with hydrogen storage in depleted oil reservoirs was constructed along with a mathematical model where the Weibull distribution, Wind turbine power function, Faraday's law, continuity equation, Darcy's law, state equation of real gas, Net Present Value (NPV) and the concept of leveling were adopted to clarify the system characteristics. For the case of a depleted oil field in the Bohai Bay, China, the annual hydrogen production, annual levelized cost of hydrogen and payback period are 2.62 × 106 m³, CNY 34.6/kgH2 and 7 years, respectively. Sensitivity analysis found that the wind speed impacted significantly on system NPV and LCOH, followed by hydrogen price and stratum pressure.  相似文献   

3.
Hydrogen is a worldwide green energy carrier, however due its low storage capacity, it has yet to be widely used as an energy carrier. Therefore, the quantum chemical method is being employed in this investigation for better understand the hydrogen storage behaviour on Pt (n = 1-4) cluster decorated C48H16 sheet. The Pt(n = 1-4) clusters are strongly bonded on the surface of C48H16 sheet with binding energies of ?3.06, ?4.56, ?3.37, and ?4.03 eV respectively, while the charge transfer from Pt(n = 1-4) to C48H16 leaves an empty orbital in Pt atom, which will be crucial for H2 adsorption. Initially, the molecular hydrogen is adsorbed on Pt(n = 1-4) decorated C48H16 sheet through the Kubas interaction with adsorption energies of ?0.85, ?0.66, ?0.72, and ?0.57 eV respectively, while H–H bond is elongated due to the transfer of electron from σ (HH) orbital to unfilled d orbital of the Pt atom, resulting in a Kubas metal-dihydrogen complexes. Furthermore, the dissociative hydrogen atoms adsorbed on Pt(n = 1-4) decorated C48H16 sheet have adsorption energies of ?1.14 eV, ?1.02 eV, ?0.95 eV, and ?1.08 eV, which are greater than the molecular hydrogen adsorption on Pt(n = 1-4) cluster supported C48H16 sheet with lower activation energy of 0.007, 0.109, 0.046, and 0.081 eV respectively. To enhance the dissociative hydrogen adsorption energy, positive and negative external electric fields are applied in the charge transfer direction. Increasing the positive electric field makes H–H bond elongation and good adsorption, whereas increasing the negative electric field results H–H bond contraction and poor adsorption. Thus, by applying a sufficient electric field, the H2 adsorption and desorption processes are can be easily tailored.  相似文献   

4.
With the rising potential of underground hydrogen storage (UHS) in depleted oil and gas reservoirs or deep saline aquifers, questions remain regarding changes to geological units due to interaction with injected hydrogen. Of particular importance is the integrity of potential caprocks/seals with respect to UHS. The results of this study show significant dissolution of calcite fossil fragments in claystone caprock proxies that were treated with a combination of hydrogen and 10 wt% NaCl brine. This is the first time it has been experimentally observed in claystones. The purpose of this short communication is to document the initial results that indicate the potential alteration of caprocks with injected hydrogen, and to further highlight the need for hydrogen-specific studies of caprocks in areas proposed for UHS.  相似文献   

5.
New hydrogen adsorption states on Li, Na, and Mg-decorated graphene-type BC3 sheet have been investigated by first-principles calculations. The structural, electronic and binding properties, metal binding and nH2 (n = 1–10) adsorption states of these systems are studied in detail with the Mulliken analysis, charge density differences, and partial density of states. To enhance the number of the adsorbed H2 molecules per metal atom, and also to generate the better initial coordinates for reducing the simulation time, we present two masthematical algorithms (CLICH and RICH). The tested results on BC3 sheet and boron-doped graphene (C30B2) show that these algorithms can increase the number of adsorbed hydrogen molecules by minimizing the computational time. It is seen that nH2 (n = 1–10) adsorbed Li,/Na and/Mg-decorated BC3 single- and double-sided systems are industrial materials for hydrogen storage technology, their adsorption energies fall into the acceptable adsorption energy range (0.20–0.60 eV/H2). It is concluded from the optimized geometries and charge density differences for the higher number of H2 adsorbed systems that not only decorated metal atom but also the sheet plays an important role in hydrogen storage process, because the boron atoms in the sheet expand the induced electric field between the adatoms and BC3 sheet. From Mulliken analysis, there is a charge transfer mechanism between H2 molecules and metal atoms. Moreover, the resonant peaks for the sheet, metal atoms and H2 molecules in partial density of states curves indicate the possible hybridizations. Additionally, these adsorption processes are supported by charge density difference plots.  相似文献   

6.
Microbial electrolysis cell (MEC) is a bioelectrochemical technology that can produce hydrogen gas from various organic waste/wastewater. Extra voltage supply (>0.2 V) is required to overcome cathode overpotential for hydrogen evolution. In order to make MEC system more sustainable and practicable, it is necessary to minimize the external energy input or to develop other alternative energy sources. In this study, we aimed to improve the energy efficiency by intermittent energy supply to MECs (setting anode potential = −0.2 V). The overall gas production was increased up to ∼40% with intermittent energy input (on/off = 60/15sec) compared to control reactor. Cathodic hydrogen recovery was also increased from 62% for control MEC to 69–80% for intermittent voltage application. Energy efficiency was increased by 14–20% with intermittent energy input. These results show that intermittent voltage application is very effective not only for energy efficiency/recovery but also for hydrogen production as compared with continuous voltage application.  相似文献   

7.
The temperature dependence of the hydrogen adsorption properties of nickel-doped mesoporous silica (MCM-41) synthesized by a direct hydrothermal method was investigated by measuring the amount of hydrogen adsorbed at pressures up to 100 kPa at 298, 373, and 473 K. Nickel-doped MCM-41 adsorbed more hydrogen than undoped MCM-41 and metallic nickel at ≈298/0, 373/0, and 473 K/0 kPa due to chemical adsorption enhanced by the highly dispersed nickel particles. Chemical adsorption increased with increasing nickel content and adsorption temperature, suggesting the presence of adsorption sites. The nickel doping also brought the spillover effect, which enhances the physical adsorption of hydrogen. The spillover effect was enhanced at high nickel contents and adsorption temperatures.  相似文献   

8.
The adsorption of the hydrogen molecule on the pure porous graphene nanosheet (P-G) or the one decorated with Be atom (Be-G) was investigated by the first-principle DFT calculations. The Be atom was adsorbed on the P-G with a binding energy of ?1.287 eV to successfully establish the reasonable Be-G. The P-G was a poor substrate to interact weakly with the H2, whereas the Be-G showed a high affinity to the adsorbed H2 with an enhanced adsorption energy and transferred electrons of ?0.741 eV and 0.11 e, respectively. A molecular dynamics simulation showed that the H2 could also be adsorbed on the Be-G at room temperature with a reasonable adsorption energy of ?0.707 eV. The interaction between the adsorbed H2 and the Be-G was further enhanced with the external electrical fields. The applied electrical field of ?0.4 V/Å was found to be the most effective to enhance the adsorption of H2 on the Be-G with the modified adsorption energy and the improved transferred electrons being ?0.708 eV and 0.17 e, respectively. Our study shows that the Be-G is a promising substrate to interact strongly with the H2 and could be applied as a high-performance hydrogen gas sensor, especially under the external electrical field.  相似文献   

9.
Transition metal doped carbon materials such as carbon nanotubes and fullerenes have been extensively investigated for hydrogen adsorption and storage applications. However, the strength of these hydrogen storage material is mainly dependent on the metal-support and hydrogen-metal interaction energies. In this work, we have designed, and explored transition metal doped C24 (TM@C24) complexes as single atom catalysts for hydrogen dissociation. Adsorption energy results for all studied TM@C24 complexes reveal the high thermodynamic stability of designed TM@C24 catalysts. Among all considered TMs@C24 catalysts, the highest adsorption energy (−6.22 eV) is calculated for Mn@C24 catalyst. Moreover, H2 dissociation mechanism is evaluated for both gas phase and in aqueous media to get insight into the solvent effect. In both gas phase and in aqueous media, the best catalytic activity for hydrogen dissociation is computed for Mn@C24 catalyst with the lowest energy barrier of 0.04 eV and 0.30 eV, respectively. NCI analysis is carried out to confirm the shared shell interactions (covalent interactions) between adsorbed hydrogen and TM@C24 complexes. Furthermore, natural bond orbital and electron density differences analysis are also performed to explore the activation and dissociation of H2 molecule. Overall results reveal that Mn@C24 complex can at as a promising low cost, highly abundant and noble metal free single atom catalyst to effectively catalyze hydrogen dissociation reaction.  相似文献   

10.
The mechanism of hydrogen molecule adsorption on 2D buckled bismuthene (b-Bi) monolayer decorated with alkali metal atoms was studied using density functional theory based first principles calculations. The decorated atoms Li, Na and K exhibited distribution on surface of b-Bi monolayer with increasing binding energy of 2.6 eV, 2.9 eV and 3.6 eV respectively. The adsorption of H2 molecule on the slabs appeared stable which was further improved upon inclusion of van der Waals interactions. The adsorption behaviour of H2 molecules on the decorated slabs is physisorption whereas the slabs were able to bind up to five H2 molecules. The average adsorption energy per H2 molecules are in range of 0.1–0.2 eV which is good for practical applications. The molecular dynamics simulation also confirmed the thermodynamic stabilities of five H2 molecules adsorbed on the decorated slabs. The storage capacity values are found 2.24 wt %, 2.1 wt %, and 2 wt %, for respective cases of Li, Na and K atoms decorated b-Bi. The analysis of the adsorbed cases pointed to electrostatic interaction of Li and H2 molecule. The adsorption energies, binding energies, charge analysis, structural stability, density of states, and hydrogen adsorption percentage specifies that the decorated b-Bi may serve as an efficient hydrogen storage material and could be an effective medium to interact with hydrogen molecules at room temperature.  相似文献   

11.
Modulating the surface electronic properties of the 2D MXenes is of significant importance to boost their hydrogen evolution reaction (HER) activity. Herein, a series of transition metal adatoms are employed to tune the surface electronic properties of Cr-based MXenes with oxygen function group for realizing impressive HER performance. The Results show that the charge of surface oxygen atoms, which is affected by both the host metal atoms and the adsorbed transition metal atoms, play critical role in the adsorption strength of hydrogen. The optimal performance is achieved by depositing Cr atom on the Cr2TiC2O2 MXene, which results in the adsorption free energy of hydrogen very close to zero (0.03 eV). Systematic electronic structure analyses confirm that the charge transfer from the adsorbed transition metals to the neighboring surface oxygen atoms could tune the orbital occupancy of oxygen and their adsorption strength to hydrogen atom and therefore the HER activity. These findings and concepts may be useful for the design of advanced MXene-based HER catalysts.  相似文献   

12.
Density functional theory and molecular dynamics were used to study the interaction of a lithium atom with a vacancy inside a graphene layer. It was found that the lithium atom is adsorbed on this vacancy, with a binding energy much larger than the lithium cohesive energy. Then, the adsorption of hydrogen molecules around lithium atoms was studied. We found that at 300 K and atmospheric pressure, this system could store up to 6.2 wt.% hydrogen, with average adsorption energy of 0.19 eV per molecule. Thus, this material satisfies the gravimetric capacity requirements for technological applications. A complete desorption of hydrogen occurs at 750 K. However, a multilayer of this system would be required for practical reasons. Under atmospheric pressure and at 300 K, we found that a system made of multiple layers of this material is stable. The storage capacity remained at 6.2 wt.%, but all adsorbed molecules were dissociated. The average adsorption energy becomes 0.875 eV/H.  相似文献   

13.
Increased penetration of renewable energy sources and decarbonisation of the UK's gas supply will require large-scale energy storage. Using hydrogen as an energy storage vector, we estimate that 150 TWh of seasonal storage is required to replace seasonal variations in natural gas production. Large-scale storage is best suited to porous rock reservoirs. We present a method to quantify the hydrogen storage capacity of gas fields and saline aquifers using data previously used to assess CO2 storage potential. We calculate a P50 value of 6900 TWh of working gas capacity in gas fields and 2200 TWh in saline aquifers on the UK continental shelf, assuming a cushion gas requirement of 50%. Sensitivity analysis reveals low temperature storage sites with sealing rocks that can withstand high pressures are ideal sites. Gas fields in the Southern North Sea could utilise existing infrastructure and large offshore wind developments to develop large-scale offshore hydrogen production.  相似文献   

14.
In the present study we report the hydrogen adsorption behavior of two SiC nanostructures; a planar sheet and a nanotube (10, 0) of 1 nm diameter decorated by Ti atoms on it. All calculations have been performed using a plane-wave based pseudopotential method. The lowest energy structure of the Ti adsorbed SiC sheet shows that Ti atom distorts the sheet in such a way that one of the Si atoms goes down the plane and the Ti atom bind with nearest three C atoms. The interaction of this Ti decorated sheet with hydrogen suggests that each Ti atom can bind up to four hydrogen molecules (all hydrogens are adsorbed in the molecular form) with an average binding energy of 0.37 eV. For SiC nanotube, the adsorption of Ti favors the hexagonal hollow site. Moreover, on interaction of this Ti decorated tube with hydrogen leads to dissociation of the first hydrogen molecule in the atomic form and thereafter adsorbs hydrogen in the molecular form. The average binding energy of hydrogen molecules on this Ti decorated tube is estimated to be 0.65 eV. Based on these results we infer that the Ti decorated SiC nanostructures moderately bind with hydrogen molecules (within the energy window for hydrogen storage materials) and therefore, can be considered as one of the potential hydrogen storage material.  相似文献   

15.
Underground hydrogen storage is considered an option for large-scale green hydrogen storage. Among different geological storage types, depleted oil/gas fields and saline aquifers stand out. In these cases, hydrogen will be prevented from leaking back to the surface by a tight caprock seal. It is therefore essential to understand hydrogen interactions with shale-type caprocks. To this end, natural pure montmorillonite clay was exposed to hydrogen gas at different pressures (0–50 bar) and temperatures (77, 195, 303 K) to acquire data on its adsorption capacity related to UHS and caprock saturation. Montmorillonite was chosen because of its large specific surface area enabling quantification of the adsorption process. Hydrogen adsorption was successfully fitted with a Langmuir isotherm model and yielded small partition coefficients indicating that hydrogen does not preferentially adsorb to the clay surface. Adsorption on montmorillonite goes back to weak physisorption as inferred from minor negative changes in the enthalpy of reaction (−790 J/mol), derived from an Excel Solver approach to the van't Hoff equation. Based on own as well as literature values, adsorption capacities, which were originally reported as mol/kg or wt%, are recast as hydrogen volume adsorbed per specific surface area (μL/m2). The acquired range is surprisingly narrow, with values ranging from 3 to 6 μL/m2, and indicates the normalised volume of hydrogen that can be expected to remain in the shale-type caprock after injected hydrogen migrated upwards through the porous reservoir. This ‘residual’ caprock saturation with hydrogen can be further restrained by considering the geothermal gradient and its effect on the molar volume of hydrogen. The experimental results presented here recommend injecting hydrogen deeper rather than shallower as pressure and temperature work in favour of increased storage volumes and decreased hydrogen loss through clay adsorption in the caprock.  相似文献   

16.
17.
Carbon monoxide (CO) in the hydrogen (H2) stream diminishes the performance of a low temperature polymer electrolyte membrane (PEM) fuel cell significantly. The existing technologies for on-board/site production of pure hydrogen with low CO concentrations operate at high temperatures and pressures and need on-board oxygen or air supply for CO oxidation. This study offers an alternative solution to on-board/site production of hydrogen suitable for low temperature PEM fuel cell applications. A thorough energy analysis and parametric study have been carried out to investigate the effect of different operating parameters on the performance of an electrolytic-based selective CO oxidation system operating at room temperature. Such a system electrochemically removes the CO molecules in a fuel stream where they are adsorbed onto the catalyst surface at the anode side of an electrolyzer, and produces additional hydrogen at the cathode side through an electrochemical water gas shift reaction. This additional hydrogen thus offsets the energy required to drive the electrolysis, making it an attractive solution for on-board/site applications. The breakthrough curves are measured for the adsorber (50 cm2 area PEM reactor) fed with different CO concentrations (100, 300 and 500 ppm CO) present in the wet hydrogen stream at different flow rates (40, 80, 120, 160 and 200 ml min−1), under the room temperature and atmospheric pressure. The electrolytic process (regeneration) parameters are optimized with an attempt of completely removing the adsorbed CO molecules. Furthermore, a thermodynamic-electrochemical model is developed to simulate the energy balance of the electrolyzer indicating that this process offsets the actual energy consumption as it produces extra hydrogen. Thermodynamically, removing CO by electricity is more efficient than by heat which leads to high energy efficiencies (>80%). The study has demonstrated that the electrolytic-based selective CO oxidation system is a promising system for on-board/site pure hydrogen production.  相似文献   

18.
A source of hydrogen is needed in the developing hydrogen economy, and many technologies are available for producing hydrogen from both conventional and alternative energy resources such as natural gas, coal, atoms, sunlight, wind, and biomass. The following paper summarizes the economics of producing hydrogen from each of these sources and gives an overview of the energy resource for each feedstock. The results of the analysis show that the most economical sources of hydrogen are coal and natural gas, with an estimated cost of 0.36–1.83 $/kg and 2.48–3.17 $/kg for each energy source, respectively. Alternative energy provides hydrogen at a higher cost; however, fossil fuel feedstock costs are increasing as technology enhancements are decreasing the cost of alternative energy sources, and therefore alternative energy sources may become more economical in the future.  相似文献   

19.
Hydrogen storage in subsurface aquifers or depleted gas reservoirs represents a viable long-term energy storage solution. There is currently a scarcity of subsurface petrophysical data for the hydrogen system. In this work, we determine the wettability and Interfacial Tension (IFT) of the hydrogen-brine-quartz system using captive bubble, pendant drop and in-situ 3D micro-Computed Tomography (CT) methods. Effective contact angles ranged between 29° and 39° for pressures 6.89–20.68 MPa and salinities from distilled water to 5000 ppm NaCl brine. In-situ methods, novel to hydrogen investigations, confirmed the water-wet system with the mean of the macroscopic and apparent contact angle distributions being 39.77° and 59.75° respectively. IFT decreased with increasing pressure in distilled water from 72.45 mN/m at 6.89 MPa to 69.43 mN/m at 20.68 MPa. No correlation was found between IFT and salinity for the 1000 ppm and 5000 ppm brines. Novel insights into hydrogen wetting in multiphase environments allow accurate predictions of relative permeability and capillary pressure curves for large scale simulations.  相似文献   

20.
Density functional theory (DFT) computational studies were conducted to explore the hydrogen storage performance of a monolayer material that is built on the base of carbon nitride (g-C3N4, heptazine structure) with decoration by magnesium (Mg). We found that a 2 × 2 supercell can bind with four Mg atoms. The electronic charges of Mg atoms were transferred to the g-C3N4 monolayer, and thus a partial electropositivity on each adsorbed Mg atom was formed, indicating a potential improvement in conductivity. This subsequently causes the hydrogen molecules’ polarization, so that these hydrogen molecules can be efficiently adsorbed via both van der Waals and electrostatic interactions. To note, the configurations of the adsorbed hydrogen molecules were also elucidated, and we found that most adsorbed hydrogen molecules tend to be vertical to the sheet plane. Such a phenomenon is due to the electronic potential distribution. In average, each adsorbed Mg atom can adsorb 1–9 hydrogen molecules with adsorption energies that are ranged from ?0.25 eV to ?0.1 eV. Moreover, we realised that the nitrogen atom can also serve as an active site for hydrogen adsorption. The hydrogen storage capacity of this Mg-decorated g-C3N4 is close to 7.96 wt %, which is much higher than the target value of 5.5 wt % proposed by the U.S. department of energy (DOE) in 2020 [1]. The finding in this study indicates a promising carbon-based material for energy storage, and in the future, we hope to develop more advanced materials along this direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号