首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zircon (ZrSiO4) ceramics have been widely used in many fields due to their excellent physical and chemical properties. However, ZrSiO4 ceramics typically possess moderately low mechanical properties, which hinders their wider application. Meanwhile, elevated temperatures (∼1500°C) are required to obtain high-purity synthetic ZrSiO4 ceramics, which is time- and energy-consuming. In the present study, we prepared mechanically robust ZrSiO4 ceramics at low temperature (∼1170°C) with a low doping level of Mn dopant (<2 mol%). The ZrSiO4 ceramic processed by hot isostatic pressing with .5 mol% Mn dopant achieved the highest flexural strength (512 MPa), elastic modulus (341 GPa), and nanohardness (20.8 GPa). These values are significantly higher than conventional ZrSiO4 ceramics. The strengthening mechanisms of the prepared ZrSiO4 ceramics were attributed to the formation of homogeneously-distributed nanopores due to incomplete densification and submicron ZrSiO4 grains (∼300 nm). The nanopores avoided stress concentration and deflected microcracks during loading, and the submicron ZrSiO4 grains endowed the ZrSiO4 ceramics with grain refinement strengthening. The results reported in this study would offer guidance to fabricate mechanically robust ZrSiO4 ceramics at low temperatures with a low doping level of dopant.  相似文献   

2.
《Ceramics International》2022,48(15):21110-21117
Silica-based ceramic core is an extremely critical component in the manufacture of hollow blades during investment casting. However, the traditional preparation methods rely more on the molds, and the manufacturing costs are relatively high. In this study, silica-based ceramics with silicon hexaboride (SiB6) addition were prepared via 3D stereolithography printing. And the effects of the SiB6 content on mechanical properties of the obtained ceramic samples were explored. As the SiB6 content increased to 2.0 wt%, the linear shrinkage gradually decreased, while the room temperature and high temperature flexural strength were enhanced at the SiB6 content from 0 to 1.0 wt% and reduced as the SiB6 content further rose. As the SiB6 content increased to 1.0 wt%, the linear shrinkage was reduced to 1.86% resulting from the oxidation reaction of SiB6. Furthermore, with 1.0 wt% SiB6 addition, the flexural strength of the samples at room temperature was enhanced from 6.75 MPa to 14.63 MPa due to the sintering promotion of oxidation product B2O3, and the flexural strength at 1550 °C was improved from 7.68 MPa to 13.08 MPa because of the enhanced β-cristobalite content, which is suitable for high temperature casting of ceramic cores. Therefore, it demonstrates the capability of fabricating SiB6 reinforced silica-based ceramic cores with high performance via stereolithography.  相似文献   

3.
Porous alumina ceramics were fabricated by starch consolidation casting using corn starch as a curing agent while their microstructure, mechanical properties, pore size distribution, and corrosion resistance were examined. Results showed that the porous alumina ceramics with the flexural strength of about 44.31MPa, apparent porosity of about 47.67% and pore size distribution in the range of 1‐4 μm could be obtained with 3wt% SiO2 and 3wt% MgO additives. Corrosion resistance results showed mass losses: hot H2SO4 solution and NaOH solution for 10 hours were 0.77% and 2.19%, which showed that these porous alumina ceramics may offer better corrosion resistance in acidic conditions.  相似文献   

4.
《Ceramics International》2023,49(15):24960-24971
Stereolithography based 3D printing provides an efficient pathway to fabricate alumina ceramics, and the exploration on the mechanical properties of 3D printed alumina ceramics is crucial to the development of 3D printing ceramic technology. However, alumina ceramics are difficult to sinter due to their high melting point. In this work, alumina ceramics were prepared via stereolithography based 3D printing technology, and the improvement in the mechanical properties was investigated based on the content, the type and the particle size of sintering aids (TiO2, CaCO3, and MgO). The flexural strength of the sintered ceramics increased greatly (from 139.2 MPa to 216.7 MPa) with the increase in TiO2 content (from 0.5 wt% to 1.5 wt%), while significant anisotropy in mechanical properties (216.7 MPa in X-Z plane and 121.0 MPa in X–Y plane) was observed for the ceramics with the addition of 1.5 wt TiO2. The shrinkage and flexural strength of the ceramics decreased with the increase in CaCO3 content due to the formation of elongated grains, which led to the formation of large-sized residual pores in the ceramics. The addition of MgO help decrease the anisotropic differences in shrinkage and flexural strength of the sintered ceramics due to the formation of regularly shaped grains. This work provides guidance on the adjustment in flexural strength, shrinkage, and anisotropic behavior of 3D printed alumina ceramics, and provides new methods for the fabrication of 3D printed alumina ceramics with superior mechanical properties.  相似文献   

5.
Porous Al2O3-based ceramics with improved mechanical strength and different pore size were fabricated using Al2O3 and SiO2 poly-hollow microspheres (PHMs) as raw materials by selective laser sintering (SLS). The effects of different contents of SiO2 PHMs on phase compositions, microstructures, mechanical properties and pore size distribution of the prepared ceramics were investigated. It is found that moderate content of SiO2 PHMs (≤30 wt%) could work as a sintering additive, which could enhance the bonding necks between Al2O3 PHMs. When the content of SiO2 PHMs increased from 0 wt% to 30 wt%, the compressive strength of Al2O3-based ceramics increased from 0.3 MPa to 4.0 MPa, and the porosity decreased from 77.0% to 65.0% with open pore size decreased from 52.0 μm to 38.3 μm. However, SiO2 PHMs could provide pores by keeping its integrity when the content of SiO2 PHMs increased to 40 wt%, which could result in the porosity increasing to 66.8% and pore size decreasing to 30.1 μm. Selective laser sintering of different kinds of ceramic PHMs is a feasible method to fabricate porous ceramics with complex shape, controllable pore size and improved properties.  相似文献   

6.
The electrical, thermal, and mechanical properties of porous SiC ceramics with B4C-C additives were investigated as functions of C content and sintering temperature. The electrical resistivity of porous SiC ceramics decreased with increases in C content and sintering temperature. A minimal electrical resistivity of 4.6 × 10?2 Ω·cm was obtained in porous SiC ceramics with 1 wt% B4C and 10 wt% C. The thermal conductivity and flexural strength increased with increasing sintering temperature and showed maxima at 4 wt% C addition when sintered at 2000 °C and 2100 °C. The thermal conductivity and flexural strength of porous SiC ceramics can be tuned independently from the porosity by controlling C content and sintering temperature. Typical electrical resistivity, thermal conductivity, and flexural strength of porous SiC ceramics with 1 wt% B4C-4 wt% C sintered at 2100 °C were 1.3 × 10?1 Ω·cm, 76.0 W/(m·K), and 110.3 MPa, respectively.  相似文献   

7.
《Ceramics International》2023,49(8):12696-12701
ZrSiO4-based ceramics have been considered as one of the candidate nuclear waste forms, while the immobilization behavior of mixed-valent uranium in the structure of the ceramics was unclear. Herein, ZrSiO4–U ceramics with a general formula of Zr1-4x(U6+xU5+2x)SiO4 were designed and synthesized. The evolutions of phase and microstructure depending on the content of U were investigated. The ceramics with 0 ≤ x < 0.04 showed a single ZrSiO4 phase, while U3O8 phase was detected when x ≥ 0.04. The results demonstrated that the solubility limit of U in ZrSiO4 ceramic was up to 1.51 at.% or 11.06 wt%. The calculated lattice parameters increased with the increase of U content. The increased parameters provided the evidence of the immobilization of both U5+ and U6+ into ZrSiO4 crystal lattice by replacing Zr4+. Furthermore, the obtained ZrSiO4–U ceramics exhibited good aqueous durability (∼10−5 g m−2 d−1). The results indicated that ZrSiO4-based ceramics can be employed to effectively immobilize mixed-valent U.  相似文献   

8.
《Ceramics International》2017,43(13):9906-9911
Silicon nitride-based composite ceramics with different contents of magnesium titanate have been fabricated via gas pressure sintering method. The phase compositions, microstructure, mechanical performances and dielectric properties of the composite ceramics were investigated. The density of the Si3N4-based composite ceramics firstly increased with additive of magnesium titanate powder up to 5 wt% and then gently decreased, and the mechanical properties firstly increased and then declined. Besides, the dielectric constant and dielectric loss increased with the increase of magnesium titanate contents. For the Si3N4-based composite ceramics with 5 wt% magnesium titanate powders, the flexural strength, elastic modulus, dielectric constant and dielectric loss reached 451 MPa, 274 GPa, 7.65, 0.0056, respectively. These results suggested that the magnesium titanate was beneficial for the improvement of mechanical performances and dielectric constant of Si3N4-based composite ceramics.  相似文献   

9.
Chopped quartz fiber-reinforced fused silica (SiO2f/SiO2) composites were fabricated by stereolithography. The fiber orientation characteristics and crack distributions after the debinding process of the green bodies were investigated. The results showed that the distribution of fibers presented orientation characteristics; additionally, the number of cracks after debinding decreased as the fiber content increased and the cracks oriented along the fiber orientation. The mechanical properties of SiO2f/SiO2 ceramics with different fiber contents were also considered. As a result, a compressive strength of 51.2 MPa and flexural strength of 24.3 MPa were achieved for the SiO2f/SiO2 ceramic with 4 wt% fiber, and a sintered cambered structure with a size over 150 mm × 150 mm × 3 mm was fabricated successfully without cracking and deformation for the SiO2f/SiO2 composites with a fiber content of 4 wt% and 6 wt%.  相似文献   

10.
Spark plasma sintering of TiB2–boron ceramics using commercially available raw powders is reported. The B4C phase developed during reaction-driven consolidation at 1900 °C. The newly formed grains were located at the grain junctions and the triple point of TiB2 grains, forming a covalent and stiff skeleton of B4C. The flexural strength of the TiB2–10 wt.% boron ceramic composites reached 910 MPa at room temperature and 1105 MPa at 1600 °С. Which is the highest strength reported for non-oxide ceramics at 1600 °C. This was followed by a rapid decrease at 1800 °C to 480–620 MPa, which was confirmed by increased number of cavitated titanium diboride grains observed after flexural strength tests.  相似文献   

11.
《Ceramics International》2016,42(16):18148-18153
Two laminated ZrB2-SiC based ceramics were prepared by tape casting and subsequent hot pressing, with BN (LZB) and graphite (LZG ) as interface layers. The LZB specimen presents flexural strength of 381 MPa at room temperature and 111 MPa at 1500 °C; while the LZG specimen shows flexural strength of 414 MPa at room temperature and 377 MPa at 1500 °C. In addition, the flexural strength of LZG specimen is always higher than that of the LZB specimen in the temperature range from room temperature to 1500 °C. Such higher strength is attributed to the healing of surface microcracks and pores by the SiO2 glass phase, producing less glass phase in graphite interface layers at high temperature.  相似文献   

12.
《Ceramics International》2023,49(19):31228-31235
Porous Si3N4 ceramics are highly regarded as ideal materials for radomes due to their unique characteristics. However, the slurry used for the preparation of porous Si3N4 ceramics suffers from a low cure depth, making it challenging to fabricate ceramic components using DLP technology. In this study, porous Si3N4 ceramics were prepared by combining DLP technology with pore-forming agent method. The addition of polymethyl methacrylate (PMMA) powders with lower refractive index than that of Si3N4 powders can improve the penetration depth of ultraviolet light in the Si3N4 slurry. A systematic study was conducted to investigate the influence of the addition of PMMA powders on the properties of Si3N4 slurries and porous Si3N4 ceramics. When PMMA powders were added at 10 wt%, the slurry with a lowest viscosity of 0.13 Pa s (the shear rate is 30 s−1) and cure depth of 40.0 μm (the exposure energy is 600 mJ/cm2) was obtained. With the increase of PMMA content, porous Si3N4 ceramics experienced a gradual decrease in both the flexural strength and bulk density, while the porosity increased from 14.41% to 27.62%. Specifically, when 20 wt% PMMA was added, the resulting porous Si3N4 ceramics had a lowest bulk density (2.41 g/cm3), a maximum porosity (27.62%), and a flexural strength (435.87 MPa). The study is of great significance in establishing an experimental foundation for fabricating porous Si3N4 ceramics by using DLP technology.  相似文献   

13.
《Ceramics International》2016,42(10):11593-11597
A new gelling system based on the polymerization of hydantion epoxy resin and 3,3′-Diaminodipropylamine (DPTA) was successfully developed for fabricating silicon nitride (Si3N4) ceramics. The effects of pH value, the dispersant content, solid volume fraction and hydantion epoxy resin amount on the rheological properties of the Si3N4 slurries were investigated. The relative density of green body obtained from the solid loading of 52 vol% Si3N4 slurry reached up to 62.7%. As the concentration of hydantion epoxy resin increased from 5 wt% to 20 wt%, the flexural strength of Si3N4 green body enhanced from 5.3 MPa to 31.6 MPa. After pressureless sintering at 1780 °C for 80 min, the sintered samples exhibited the unique interlocking microstructure of elongated β-Si3N4 grains, which was beneficial to improve the mechanical properties of Si3N4 ceramics. The relative density, flexural strength and fracture toughness of Si3N4 ceramics reached 97.8%, 687 MPa and 6.5 MPa m1/2, respectively.  相似文献   

14.
《Ceramics International》2023,49(1):145-153
Full-dense B4C-based ceramics with excellent mechanical properties were fabricated using spark plasma sintering with Mg2Si as a sintering aid at a low temperature of 1675 °C while applying a uniaxial pressure of 50 MPa. The effect of Mg2Si addition on the densification behaviours, mechanical properties and microstructure of as-sintered ceramics were investigated. Not only did the formation of ultra-fine grained SiC using the in-situ reaction effectively inhibit the growth of B4C grains, but it also contributed to the strength and toughness of the resultant ceramics. Additionally, microalloying Mg imparted more metal bonding characteristics to the B4C matrix, thereby improving their ductility. The results indicate that the composite containing 7 wt% Mg2Si had excellent mechanical properties, including a light weight of 2.54 g/cm3, Vickers hardness of 34.3 GPa, fracture toughness of 5.09 MPa m1/2 and flexural strength of 574 MPa.  相似文献   

15.
A novel and rapid fabrication method for Al2O3 ceramics by the DCC-HVCI method via microwave heating was proposed. Effects of microwave heating temperature on coagulation time, micromorphology, as well as performance of the green body and ceramic sample were studied. As the microwave heating temperature rises, the coagulation time gradually reduced and compressive strength of green sample decreased while relative density and flexural strength of ceramics rose at the beginning and then dropped. The 50 vol.% Al2O3 suspension was coagulated and demolded after treating at 60°C for 800 s by microwave heating. The compressive strength of green samples reached 1.12 ± 0.13 MPa. The relative density of Al2O3 ceramic samples reached 99.39%. And the flexural strength of Al2O3 ceramics reached 334.55 ± 26.41 MPa. The Weibull modulus of Al2O3 ceramics reached 19. In contrast with the ceramic samples heated through water bath, the ceramic samples treated through microwave possessed uniform microstructures. Microwave heating could reduce the coagulation time by 77%. Meanwhile, it could significantly raise the compressive strength of green bodies by 65%. Additionally, it could increase the flexural strength of ceramics by 30%.  相似文献   

16.
The effects of B4C content on the specific stiffness and mechanical and thermal properties of pressureless-sintered SiC ceramics were investigated. SiC ceramics containing 2.5 wt% C and 0.7–20 wt% B4C as sintering aids could be sintered to ≥ 99.4% of the theoretical density at 2150 °C for 1 h in Ar. The specific stiffness of SiC ceramics increased from 136.1 × 106 to 144.4 × 106 m2‧s−2 when the B4C content was increased from 0.7 to 20 wt%. The flexural strength and fracture toughness of the SiC ceramics were maximal with the incorporation of 10 wt% B4C (558 MPa and 3.69 MPa‧m1/2, respectively), while the thermal conductivity decreased from ∼154 to ∼83 W‧m−1‧K−1 when the B4C content was increased from 0.7 to 30 wt%. The flexural strength and thermal conductivity of the developed SiC ceramic containing 20 wt% B4C were ∼346 MPa and ∼105 W‧m−1‧K−1, respectively.  相似文献   

17.
This article investigates effect of composition, including SiO2 and impurity defined to contain K2O, Na2O, Fe2O3, etc., from K-feldspar, on sinter-crystallization and properties of the low temperature co-fired α-cordierite glass–ceramics. Increasing impurity content from 5.72 wt% to 9.16 wt% leads to enhanced crystallinity, formation of leucite and more pores but the crystallinity and porosity decreased with a further increase to 10.8 wt%. The main impurity K2O is critical for formation of α-cordierite and leucite. Only α-cordierite was precipitated from the glasses with different SiO2 contents but an increase of SiO2 content slightly improves their densification. The impurity and SiO2 contents greatly affect the properties of glass–ceramics. Notably, some glass–ceramics from K-feldspar show high densification at low temperature, low dielectric constant (6–8), low loss (about 0.005), appropriate linear CTEs (4.32–5.87 × 10−6 K−1) and flexural strength (above 100 MPa), all of which meet the requirements of LTCC substrates.  相似文献   

18.
The effects of zirconia and yttrium oxide addition on microstructure, bulk density, microhardness, flexural strength, and wear resistance of high alumina ceramics (>97 wt% Al2O3, MSA ceramics) composed of MgO–SiO2–Al2O3 system have been investigated. The results show that the addition of zirconia makes the mechanical properties and wear properties of ceramics composed of MgO–SiO2–Al2O3–ZrO2 (MSAZ ceramics) system have been greatly improved compared with MSA ceramics. In addition, the ceramics composed of MgO–SiO2–Al2O3–ZrO2–Y2O3 (MSAZY ceramics) system have better mechanical properties and wear properties than MSAZ ceramics. With the contents of zirconia and yttrium oxide increase, the bulk density, microhardness, and flexural strength of MSAZ and MSAZY ceramics increased at first and then decreased. However, the wear rate shows the opposite. When 0.4 wt% ZrO2 and 0.6 wt% Y2O3 were added to the matrix, the wear rate of MSAZY ceramics reached a minimum of 0.042%, and the wear resistance was improved by about 73.8% compared with MSA ceramics with a wear rate of 0.16%. In addition, the optimum additions of zirconia and yttria are 0.4% and 0.6%, respectively.  相似文献   

19.
Porous silicon nitride (Si3N4) ceramics were fabricated by self-propagating high temperature synthesis (SHS) using Si, Si3N4 and sintering additive as raw materials. Effects of different types of sintering additives with varied ionic radius (La2O3, Sm2O3, Y2O3, and Lu2O3) on the phase compositions, development of Si3N4 grains and flexural strength (especially high-temperature flexural strength) were researched. Si3N4 ceramics doped with sintering additive of higher ionic radius had higher average aspect ratio, improved room-temperature flexural strength but degraded high-temperature flexural strength. Besides, post-heat treatment (PHT) was conducted to crystallize amorphous grain boundary phase thus improving the creep resistance and high-temperature flexural strength of SHS-fabricated Si3N4 ceramics. Excellent high-temperature flexural strength of 140 MPa~159 MPa and improved strength retention were achieved after PHT at 1400 °C.  相似文献   

20.
Zirconia-toughened alumina (ZTA) ceramics with high mechanical properties were sintered by hot-pressing method using SiC particles (SiCp) and SiC whiskers (SiCw) as the reinforcing agents simultaneously. The influences of sintering temperature, SiCp, and SiCw contents on the microstructure and mechanical properties of ZTA ceramics were investigated. It was found that both SiCp and SiCw could contribute to grain refinement significantly and promote the mechanical properties of the ceramics. However, the excess addition of SiCp or SiCw led to the formation of pores with large sizes and degraded the mechanical properties instead. When 13 wt% SiCp was introduced, the maximum flexural strength of 1180.0 MPa and fracture toughness of 15.9 MPa·m1/2 were obtained, whereas the maximum flexural strength of 1314.0 MPa and fracture toughness of 14.7 MPa·m1/2 were achieved at 20 wt% SiCw. Interestingly, the simultaneous addition of SiCp and SiCw could further improve the mechanical properties, and the highest flexural strength of 1334.0 MPa and fracture toughness of 16.0 MPa·m1/2 were achieved at a SiCw/SiCp ratio of 16/4. The reinforcement mechanisms in the ceramics mainly included the phase transformation toughening of ZrO2, the crack deflection and bridging of SiCp and SiCw, and the pull-out of SiCw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号