首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We reported well-integrated zinc oxide (ZnO) nanorod arrays (NRAs) on conductive textiles (CTs) and their structural and optical properties. The integrated ZnO NRAs were synthesized by cathodic electrochemical deposition on the ZnO seed layer-coated CT substrate in ultrasonic bath. The ZnO NRAs were regularly and densely grown as well as vertically aligned on the overall surface of CT substrate, in comparison with the grown ZnO NRAs without ZnO seed layer or ultrasonication. Additionally, their morphologies and sizes can be efficiently controlled by changing the external cathodic voltage between the ZnO seed-coated CT substrate and the counter electrode. At an external cathodic voltage of −2 V, the photoluminescence property of ZnO NRAs was optimized with good crystallinity and high density.  相似文献   

2.
A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells.

PACS

61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.)  相似文献   

3.
ZnO/CdSe core-shell nanorod array films were synthesized via a two-step method. ZnO nanorod array films were first grown on a TCO substrate, and then CdSe nanocrystals were deposited on the nanorods to form core-shell structured films. The resulting films were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis absorption spectroscopy. Especially, dark-field images and transmission electron diffraction of the TEM were used to study the morphology and the chemical nanostructure of the ZnO/CdSe core-shell nanorods in detail. We investigated the photovoltaic performance of the resulting ZnO/CdSe core-shell nanorod array films as solar cell photoanodes. Parameters, such as the length of the ZnO nanorods, the shell phase structure and the deposition time of the CdSe nanocrystals were found to affect the photovoltaic performance of the solar cell. This study provides a facile method to prepare nanocomposite photoanodes of solar cells, and gives some insight about the fundamental mechanisms that improve the performance.  相似文献   

4.
Transparent conductive films of Al-doped zinc oxide (AZO) were deposited on glass substrates under various ZnO buffer layer deposition conditions (radio frequency (r.f.) power, sputtering pressure, thickness, and annealing) using r.f. magnetron sputtering at room temperature. This work investigates the influence of ZnO buffer layer on structural, electrical, and optical properties of AZO films. The use of grey-based Taguchi method to determine the ZnO buffer layer deposition processing parameters by considering multiple performance characteristics has been reported. Findings show that the ZnO buffer layer improves the optoelectronic performances of AZO films. The AZO films deposited on the 150-nm thick ZnO buffer layer exhibit a very smooth surface with excellent optical properties. Highly c-axis-orientated AZO/ZnO/glass films were grown. Under the optimized ZnO buffer layer deposition conditions, the AZO films show lowest electrical resistivity of 6.75 × 10−4 Ω cm, about 85% optical transmittance in the visible region, and the best surface roughness of Ra = 0.933 nm.  相似文献   

5.
高定向ZnO纳米棒阵列膜的制备及其光学性能   总被引:3,自引:1,他引:3  
采用阴极恒电位沉积方法,在Zn(NO3)2溶液中,用六亚甲基四胺作为形貌控制试剂,直接在氧化铟锡玻璃衬底上制备出透明致密的ZnO纳米棒阵列膜。通过X射线衍射、扫描电镜和能量色散谱表征了薄膜的形貌和结构,测量了ZnO纳米棒阵列膜的光学透射谱和光致发光谱。结果表明:所制备的具有c轴高度择优取向的ZnO纳米棒为高纯单晶纤锌矿结构,粒径约为200nm,膜的结晶度和表面平整度明显提高。ZnO薄膜在可见光区具有高透射率(80%)和陡峭的吸收边缘,室温光致发光谱显示,在380nm处存在一个尖锐的强紫外发射峰和在510nm处存在一宽带弱绿光发射峰。  相似文献   

6.
We reported the enhancement of the structural and optical properties of electrochemically synthesized zinc oxide [ZnO] nanorod arrays [NRAs] using the multi-walled carbon nanotube [MWCNT]-composed seed layers, which were formed by spin-coating the aqueous seed solution containing MWCNTs on the indium tin oxide-coated glass substrate. The MWCNT-composed seed layer served as the efficient nucleation surface as well as the film with better electrical conductivity, thus leading to a more uniform high-density ZnO NRAs with an improved crystal quality during the electrochemical deposition process. For ZnO NRAs grown on the seed layer containing MWCNTs (2 wt.%), the photoluminescence peak intensity of the near-band-edge emission at a wavelength of approximately 375 nm was enhanced by 2.8 times compared with that of the ZnO nanorods grown without the seed layer due to the high crystallinity of ZnO NRAs and the surface plasmon-meditated emission enhancement by MWCNTs. The effect of the MWCNT-composed seed layer on the surface wettability was also investigated.  相似文献   

7.
In the present study, we report the optimization of various deposition parameters viz. bath temperature, deposition time and current density to deposit densely packed and vertically aligned ZnO nanorod thin films on cost effective substrate, i.e. steel, by electrodeposition technique. The obtained vertically aligned ZnO nanorod thin films are sensitized by CdS quantum dots (QDs) and utilized for photoelectrochemical (PEC) cell application. Effect of redox electrolyte on the PEC cell properties of CdS QDs sensitized ZnO nanorod thin films is investigated using two different electrolytes viz. polysulfide and ferro(i)cyanide.1 CdS QDs, of around 10 nm in diameter, are synthesized by chemical bath deposition (CBD) method. The deposited ZnO nanorods having diameter in the range 100–120 nm showed hydrophobic nature, which changed to hydrophilic after CdS QDs sensitization. The maximum short circuit current density (Jsc) and open circuit voltage (Voc) are observed for ferro(i)cyanide electrolyte and are found to be 680 μA cm−2 and 520 mV, respectively, under 10 mW cm−2 of illumination. However, better photoelectrode stability is observed for polysulfide electrolyte.  相似文献   

8.
采用水热合成法在预先生长的ZnO种子层的玻璃衬底上制备出ZnO纳米棒有序阵列薄膜。通过X射线衍射、扫描电镜、透射电镜和选区电子衍射分析表明:所制备的薄膜由垂直于ZnO种子层的纳米棒组成,呈单晶六角纤锌矿ZnO结构,且沿[001]方向择优生长,纳米棒的平均直径和长度分别为10.0nm和3.3μm。  相似文献   

9.
采用两步法在FTO导电玻璃衬底上制备ZnO纳米棒,首先利用浸渍-提拉法在FTO导电玻璃衬底上制备ZnO晶种层,然后把有ZnO晶种层的FTO衬底放入盛有生长溶液的反应釜中利用水热法制备ZnO纳米棒.研究了生长溶液的浓度、生长温度和生长时间对所制备的对ZnO纳米棒阵列的微结构和光致发光性能的影响,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和光致发光谱(PL)研究了ZnO样品的结构、形貌和光学性质.实验结果表明:所制备的ZnO纳米棒呈现六方纤锌矿结构,沿(002)晶面择优取向生长,纳米棒的平均直径约为100 nm,长度约为2.5 μm.所制备的ZnO纳米棒在390 nm附近具有很强的紫外发光峰和在550 nm附近有较弱的宽绿光发光峰.  相似文献   

10.
《Ceramics International》2016,42(13):14581-14586
Aluminum and gallium co-doped ZnO (AGZO) thin films were grown by simple, flexible and cost-effective spray pyrolysis method on glass substrates at a temperature of 230 °C. Effects of equal co-doping with aluminum (Al) and gallium (Ga) on structural, optical and electrical properties were investigated by X-ray diffraction (XRD), UV–vis–NIR spectrophotometry and Current–Voltage (I–V) measurements, respectively. XRD patterns showed a successful growth with high quality polycrystalline films on glass substrates. The predominant orientation of the films is (002) at dopant concentrations ≤2 at% and (101) at higher dopant concentrations. Incorporation of Al and Ga to the ZnO crystal structure decreased the crystallite size and increased residual stress of the thin films. All films were highly transparent in the visible region with average transmittance of 80%. Increasing doping concentrations increased the optical band gap, from 3.12 to 3.30 eV. A blue shift of the optical band gap was observed from 400 nm to 380 nm with increase in equal co-doping. Co-doping improved the electrical conductivity of ZnO thin films. It has been found from the electrical measurements that films with dopant concentration of 2 at% have lowest resistivity of 1.621×10−4 Ω cm.  相似文献   

11.
In this work, ZnO nanorod arrays were grown on glass substrate by the wet chemical method, and the effect of synthesis temperature on the properties was investigated. The grown nanorods were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman and Photoluminescence (PL) measurements. XRD pattern showed that nanorod prepared at 80 °C and 90 °C has high crystallinity with wurtzite structure and orientated along the c-axis. However, nanorods were not formed at 60 °C and 70 °C due to less energy supply for the growth of the ZnO. FE-SEM results showed that the morphology and the size of ZnO can be effectively controlled. In particular, as the temperature increased, diameter of the nanorod was increased while length decreased. Raman scattering spectra of ZnO nanorod arrays revealed the characteristic E2high mode that is related to the vibration of oxygen atoms in the wurtzite ZnO. Room-temperature PL spectra of the ZnO nanorods revealed a near-band-edge (NBE) emission peak. The NBE (UV light emission) band at ~383 nm might be attributed to the recombination of free exciton. The narrow full-width at half-maximum (FWHM) of the UV emission indicated that ZnO nanorods had high crystallinity.  相似文献   

12.
Thin films composed of ZnO nanowires (NWs) hierarchically organized with an urchin-like 3D morphology were obtained by combining the electrochemical deposition and sphere lithography methods. Deposited on a transparent conductive oxide substrate (TCO), a monolayer of carboxylate modified polystyrene spheres organized with a hexagonal closed-packed structure played the role of a template. The spheres were activated in a solution of zinc chloride by the formation of bonds between the carboxylate terminals and the Zn2+ ions and were used as a template for the electrodeposition of vertically aligned ZnO NWs around them. Without this treatment, ZnO NWs were deposited only on the TCO substrate between the PS spheres. To reach a density of nanowires high enough to obtain the urchin morphology, the concentration of ZnCl2 had to be at least equal to 2 M. It was also found, as soon as small grains of ZnO started to be electrodeposited on the polystyrene spheres that the spheres were no longer close packed. The space created between them increased with the increase in the number of small ZnO grains and the increase in their length, allowing the further growth of the nanowires between the spheres. As a result the initial round shape of the spheres was modified and the urchin-like ZnO exhibited an ellipsoidal shape.  相似文献   

13.
A hybrid technique for the selective growth of ZnO nanorod arrays on wanted areas of thin cover glass substrates was developed without the use of seed layer of ZnO. This method utilizes electron-beam lithography for pattern transfer on seedless substrate, followed by solution method for the bottom-up growth of ZnO nanorod arrays on the patterned substrates. The arrays of highly crystalline ZnO nanorods having diameter of 60 ± 10 nm and length of 750 ± 50 nm were selectively grown on different shape patterns and exhibited a remarkable uniformity in terms of diameter, length, and density. The room temperature cathodluminescence measurements showed a strong ultraviolet emission at 381 nm and broad visible emission at 585–610 nm were observed in the spectrum.  相似文献   

14.
ZnO nanorod arrays are prepared on a silicon wafer through a multi-step hydrothermal process. The aspect ratios and densities of the ZnO nanorod arrays are controlled by adjusting the reaction times and concentrations of solution. The investigation of field emission properties of ZnO nanorod arrays revealed a strong dependency on the aspect ratio and their density. The aspect ratio and spacing of ZnO nanorod arrays are 39 and 167 nm (sample C), respectively, to exhibit the best field emission properties. The turn-on field and threshold field of the nanorod arrays are 3.83 V/μm and 5.65 V/μm, respectively. Importantly, the sample C shows a highest enhancement of factor β, which is 2612. The result shows that an optimum density and aspect ratio of ZnO nanorod arrays have high efficiency of field emission.  相似文献   

15.
《Ceramics International》2016,42(4):5136-5140
Anti-reflection coatings (ARCs) are widely used in various optical and optoelectronic devices to minimize the reflection of light. In this study, we demonstrated the fabrication of ZnO nanopyramidal structures on Si substrate via low-temperature electrochemical deposition. We also investigated the anti-reflection (AR) properties of these nanostructures compared with nanorods and planar ZnO texture on Si substrates. We changed the growth conditions, namely, growth temperature and applied current density, to modify the shape of the ZnO nanorod tips. Nanopyramidal structures with continuously varying refractive index profiles in a single layer were obtained. Reflectance spectra show that the nanopyramid-based texture reduced the reflection of light in a broad spectral range from 380 nm to 1000 nm and is much more effective than nanorod and planar textures. For nanopyramid arrays (NPAs) with average tip diameter of 20 nm, we achieved a 6.5% reflectance over a wide range of wavelengths, which is superior to an optimized single-layer ARC such as SiO2 or TiO2. These textured ZnO ARCs may be applied to a wide variety of photovoltaic devices and other anti-reflection applications with large areas because of their low temperature, fast growth, and simple fabrication.  相似文献   

16.
ABSTRACT: Transparent conducting ZnO/Ag/ZnO multilayer electrodes having electrical resistance much lower than that of widely used transparent electrodes were prepared by ion-beam-assisted deposition (IAD) under oxygen atmosphere. The optical parameters were optimized by admittance loci analysis to show that the transparent conducting oxide (TCO) film can achieve an average transmittance of 93%. The optimum thickness for high optical transmittance and good electrical conductivity was found to be 11 nm for Ag thin films and 40 nm for ZnO films, based on the admittance diagram. By designing the optical thickness of each ZnO layer and controlling process parameters such as IAD power when fabricating dielectric-metal-dielectric films at room temperature, we can obtain an average transmittance of 90% in the visible region and a bulk resistivity of 5 x 10^-5 ohm-cm. These values suggest that the transparent ZnO/Ag/ZnO electrodes are suitable for use in dye-sensitized solar cells.  相似文献   

17.
In this work, we demonstrated the effect of crystal defects on the photoelectrochemical properties of ZnO nanorod arrays (NRAs). Vertically aligned ZnO NRAs with different defect contents were grown on F doped SnO2 (FTO) glass substrate via facile electrochemical process and annealing treatement.  相似文献   

18.
Here we report that the various Ce4+-doped ZnO nanorods can be successfully synthesized by electrochemical deposition route, which represents a simple, quick and economical method for the controllable growth of Ce4+-doped ZnO nanorods. The high-resolution transmission electron microscopy (HRTEM) and the selected area electron diffraction (SAED) both proved that the prepared Ce4+-doped ZnO nanorods consisted of single crystal with preferential growth in the [0 0 0 1] direction. The morphology and size of the nanorods can be tailored by optimizing the synthetic parameters. Furthermore, the flowerlike Ce4+-doped ZnO nanorod clusters can also be successfully prepared. An obvious blue-shifted absorption peak of Ce4+-doped ZnO nanorod compared with that of the bulk ZnO phase was observed.  相似文献   

19.
《Ceramics International》2022,48(21):31559-31569
Colloidal Zinc oxide quantum dots (ZnO QDs) prepared with varying concentrations through precipitation method were deposited on flexible ITO/PET substrates using spin-coating technique. Various characterization tools were utilized to investigate the morphological, structural, electrical and optical properties of the films. The crystallinity of the films was found to improve with increasing ZnO QD concentration (ZQC) as evident from the X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) studies. Crystallographic and optical parameters were evaluated and explained in depth. The average nanograin size and bandgap were increased and decreased respectively, from ~5 nm to ~8 nm and 3.29 eV–3.24 eV with an increase in ZQC from 10 mg/mL to 70 mg/mL. Columnar structure growth of the films is revealed by AFM results. The films showed decent optical transparency up to 81%. All the ZnO films exhibited n-type semiconducting property as indicated by the electrical measurements with carrier mobility and low resistivity of 12.21–26.63 cm2/Vs and 11.84 × 10?3 to 13.16 × 10?3 Ω cm respectively. Based on the experimental findings, ZnO QD nanostructure film grown at 50 mg/mL is envisaged to be a potential candidate for flexible perovskite photovoltaic application.  相似文献   

20.
We report the effect of Ti-doping on structural, morphological, photoluminescence, optical and photoconductive properties of ZnO thin films. Pure and Ti(1, 3 and 5%)-doped ZnO thin films are deposited by the successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction analysis revealed the single-phase hexagonal wurtzite ZnO structure of all the films. Scanning electron microscope images suggest the formation of rod shaped particles in Ti-doped ZnO thin films. Photoluminescence spectra of all the films show emission peaks centered at 398 nm, 413 nm, 438 nm, 477 nm and 522 nm wavelengths. Optical properties support the semiconducting nature of all the films. The optical bandgap values are estimated to be 3.29 eV, 3.26 eV, 3.19 eV and 3.23 eV for ZnO, ZnO:Ti(1%), ZnO:Ti(3%) and ZnO:Ti(5%) thin films, respectively. Photoconductivity study indicates that ZnO:Ti(3%) thin film exhibits high responsivity, external quantum efficiency and detectivity of 0.30 AW-1, 97% and 5.49 × 1010 Jones, respectively, among all the films. The enhanced photoconductivity of Ti-doped ZnO thin films make them useful for optoelectronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号