首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.  相似文献   

2.
《Ceramics International》2021,47(22):31650-31665
In this research work, we report a novel method for developing ternary NiCo2O4 compounds using deep eutectic solvents (DESs) and a strategy for improving their pseudocapacitive performance. NiCo2O4 composites with N-doped carbon nanotubes (NCNTs) were fabricated on Ni foam using a hydrothermal method. The electrochemical performance of the NiCo2O4 was altered with the change in the reaction temperature. The composite of NiCo2O4 and NCNTs demonstrated a maximum value of specific capacity of 303 mAh g−1 at a scan rate of 5 mV s−1. The specific capacity for the composite compound was 1.3-fold greater than that of the pristine NiCo2O4 sample. For practical applications, we constructed a flexible solid-state hybrid supercapacitor comprised of NiCo2O4/NCNTs//activated carbon (AC) cells with an excellent energy density of 12.31 Wh kg−1, outstanding power density of 8.96 kW kg−1, and tremendous electrode stability. The three-dimensional mesoporous nanoflowers and nanotubes-like nanostructures of NiCo2O4 are well-suited for use in hybrid devices as well as convenient for flexible electronic devices.  相似文献   

3.
《Ceramics International》2019,45(15):18273-18280
Hybrid transitional metals oxides have been attracted more and more attention in the field of supercapacitors. However, the design of structure and composition of materials is always a challenge due to tedious preparation process and difficult structure construction. Based on above issue, we construct novel raspberry-like Ni/NiO/CoO/Mn3O4 hierarchical structures (NNCMs) with excellent electrochemical performances by one-step hydrothermal process in this work. The introduction of metallic Ni and well-designed hierarchical structures can result in well improved conductivity for electrode material, sufficient channels and active sites for electrolyte ions to enter and contact with electrode material. The NNCMs-16 electrode exhibits a high specific capacitance of 1964 F g−1 and superior cycling stability (95% of initial specific capacitance after 10000 cycles). The assembled NNCMs-16//AC device delivers outstanding energy densities of 70.4 Wh kg−1 at power densities of 794.5 W kg−1. Thus, the raspberry-like NNCMs-16 hierarchical structures can be regarded as promising materials for practical supercapacitors and this work also provides a valuable reference for the preparation and application of high performance electrode materials.  相似文献   

4.
《Ceramics International》2022,48(7):9459-9467
Developing efficient electrode material with rational design and structure remains a crucial and great challenge for the significant improvement of high-performance hybrid supercapacitors (HSCs). Particularly, the performance of the HSCs can be largely enhanced by designing the battery-type Faradaic material with well-defined morphology and defective engineering. Here, a facile and effective strategy is utilized to develop oxygen-deficient flower-like three-dimensional NiMoO4?δ (Od-NMO) nanomaterial via hydrothermal process and following thermal-treatment under an inert-gas atmosphere. The presence of oxygen deficiency in the Od-NMO is evaluated utilizing various spectroscopy techniques by comparing the pristine NiMoO4 (P-NMO) heat treated under an ambient atmosphere. The electrochemical studies indicate that the oxygen defect sites in the Od-NMO electrode have a considerable role in the betterment of supercapacitive performances. Hence, the Od-NMO electrode provides a large specific capacity of 789 mA h g?1 at 1 A g?1 with an excellent rate capability than the P-NMO (579 mA h g?1). Besides, the fabricated HSC based on Od-NMO flower and activated carbon as the positive and negative electrodes, delivers a specific capacitance as high as 153 F g?1 and accomplishes a large energy density (47.76 W h kg?1) and power density (51.69 kW kg?1) with improved long-term stability.  相似文献   

5.
超级电容器具有功率密度大、寿命长、生产成本低等优点,被认为是最有发展前途的储能系统之一。然而,超级电容器的低能量密度阻碍了其实际应用。由于存储的能量与CV2成正比,可以通过增加材料的电容"C"或操作电压窗口"V"或两者同时增加来提高超级电容器的能量密度。然而具有宽电位窗口的有机电解质离子往往电导率差,成本高,容易引起环境问题。因此为改善能量密度,应采用高比电容的电极材料,故而设计出具有高比电容的适合电极材料就成为研究热点。Ni(OH)2作为超级电容器电极材料,具有理论容量大、成本低、天然丰富、易于合成等优点,近年来备受关注。但由于Ni(OH)2导电率低、比表面积小,其容量劣化严重。碳质材料作为双电层超级电容器的电极材料,其能量存储机制取决于电极表面的电解质离子吸附和解离,具有导电率好、原料丰富、成本较低、电化学稳定性高等优点而应用广泛。因此,有必要将高导电碳质材料引入Ni(OH)2组成复合材料以提高电容性能。笔者综述了Ni(OH)2基材料的合成方法,特别是与碳质材料复合来提高Ni(OH)2基材料的循环稳定性和倍率性能方面的研究新进展。  相似文献   

6.
We present a new concept of the hybrid electrochemical capacitor technology in which a poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) nitroxide polyradical/activated carbon composite (PTMA-AC) is used as the positive electrode material and activated carbon is used as the negative electrode material. On the positive electrode, both reversible reduction and oxidation of nitroxide polyradical and non-faradic ion sorption/de-sorption of activated carbon are involved during charge and discharge process. The capacity of the composite electrode is 30% larger than that of the pure activated carbon electrode. A hybrid capacitor fabricated by the PTMA-AC composite positive electrode and the activated carbon negative electrode shows a good cycling life, it can be charged/discharged for over 1000 cycles with slight capacity loss. The hybrid capacitor also has a good rate capability, it maintains 80% of the initial capacity even at the high discharge current of up to 20C.  相似文献   

7.
《Ceramics International》2022,48(3):3636-3646
A poor electrical conductivity and short cycle life limits the wide application of transition metal oxides in energy storage applications. In this study, yolk-shell structured CuCo2S4 was grown on NiO nanosheets (NiO@CuCo2S4) via a hydrothermal method and vulcanization, which combined the synergistic interactions between Ni, Co, and Cu. The effect of varying the amount of the vulcanizing agent (thiourea) on the electrochemical performance of NiO@CuCo2S4 was also investigated. Moreover, the amount of thiourea not only tuned the morphology of the composite, but significantly influenced its electrochemical performance. When the Cu2+: Co2+: thiourea molar ratio in the precursor solution was 1:2:6, the obtained NiO@CuCo2S4 exhibited the best electrochemical performance of the various systems examined, with a specific capacitance of 1658 F g?1 being achieved at 1 A g?1. Density functional theory calculations further confirmed the excellent synergistic effect between NiO and CuCo2S4. In addition, the asymmetric supercapacitor composed of a NiO@CuCo2S4 positive electrode reached an ultrahigh energy density of 73 Wh kg?1 at a power density of 802 W kg?1, as well as excellent cycling stability (i.e., 91% capacitance retention after 5000 cycles). These results suggest that NiO@CuCo2S4 is a promising candidate for use in energy storage applications.  相似文献   

8.
《Ceramics International》2023,49(4):6280-6288
Bundled V2O5 nanobelts decorated with Fe3O4 nanoparticles (F3V nanostructures) were successfully synthesized to develop a low-cost electrode material for energy storage applications. The synthesized samples were subjected to structural, morphological and electrochemical studies. The Fe3O4 nanoparticles decorated over bundled V2O5 nanobelts exhibited better electrochemical properties than the pristine Fe3O4 nanoparticles and V2O5 nanobelts. The electrochemical behavior of the fabricated electrodes was investigated in an electrolyte of 3 M KOH, demonstrated an exceptional specific capacity values of 750.1, 660.3, and 1519 F g–1 for V2O5, Fe3O4, and F3V respectively at a current density of 15 A g–1. The assembled F3V symmetric supercapacitor (SSC) device exhibited an excellent specific capacitance of 93 F g–1 at a current density of 0.5 A g–1, delivering energy and power densities of 13 Wh.kg–1 and 1530 W kg–1, respectively, and superior long-term cycling stability of ~84% capacity retention over 5000 galvanostatic charge–discharge cycles. These findings demonstrate the extraordinary electrochemical characteristics of the F3V nanostructures, indicating their potential use in energy storage applications.  相似文献   

9.
Bimetallic selenides have aroused great interest as the electroactive materials for energy storage because of their high conductivity, robust electrochemical activity, and the synergistic effect. Herein, (Ni0.75Co0.25)Se2 nanoparticles embedded in N-doped nanocarbon ((Ni0.75Co0.25)Se2@NC) hybrids were derived from nickel and cobalt bimetal-organic frameworks (NiCo-MOFs), which were synthesized by ethylene glycol solvothermal method. Due to the synergistic contributions and unique architecture, (Ni0.75Co0.25)Se2@NC hybrids electrode presents a considerable specific capacity of 536.6 C g?1 at a discharge current density of 1 A g?1. In addition, an as-assembled (Ni0.75Co0.25)Se2@NC//activated carbon (AC) hybrid supercapacitor (HSC) ((Ni0.75Co0.25)Se2@NC//AC HSC) shows large specific capacitance (73.6 F g?1 at 0.5 A g?1), outstanding energy density (26.2 Wh kg?1 at 400 W kg?1) with superior cyclic performance (88.7% of capacity retention after 5000 cycles). Furthermore, a (Ni0.75Co0.25)Se2@NC//AC device could drive a mini-fan running for 67 s. Thus, (Ni0.75Co0.25)Se2@NC is an outstanding active material for electrochemical energy storage.  相似文献   

10.
《Ceramics International》2019,45(10):13099-13111
We introduce a facile way to improve the performance of NiCo2O4 electrode by including a Ni seed layer. The seed layer deposited on Ni foam electrode (NiCo2O4/Ni@NF) shows the superior specific capacity of 1142 C g−1 at 1 A g−1 with the excellent cycle stability of ∼96% even after 5000 cycles at a higher current density of 5 A g−1. These values are about 3.7 times higher than that of the electrode (NiCo2O4@NF) without a seed layer, which shows the specific capacity of 305 C g−1@1 A g−1 with cycle stability of 84% even at a lower current density of 1 A g−1. The enhanced performance of the NiCo2O4/Ni@NF electrode may be attributed to lower interface resistance, fast redox reversible reaction, and improved surface active sites. Further, the asymmetric solid-state supercapacitor device is fabricated by using the NiCo2O4/Ni@NF electrode as a positive and reduced graphene oxide (rGO)-Fe2O3 nanograin as a negative electrode with PVA-KOH gel electrolyte, and the NiCo2O4/Ni20@NF//rGO-Fe2O3@NF asymmetric solid state device delivers an areal capacitance of 446 mF cm−2 with a low capacitance loss of 18% even after 10000 cycles. Further, the fabricated asymmetric solid state device shows a maximum energy density of 124.3 Wh cm−2 (at 3.58 kW cm−2) and power density of 14.88 kW cm−2 (at 31.41 Wh cm−2).  相似文献   

11.
La-doped NiO nanofibers were synthesized by the electrospinning method. The X-ray diffraction (XRD) pattern showed that La doping does not change the crystal structure up to the doping ratio of La/Ni=1.5%. Electrochemical properties of La-doped NiO nanofibers were investigated using cyclic voltammetry and galvanostatic charge/discharge. The results showed that the La doping can enhance the charge/discharge specific capacitance and electrochemical stability of the NiO nanofibers. Especially, the sample with doping ratio of La/Ni=1.5% could reach a discharge specific capacitance of 94.85 F g−1 at a constant current density of 5 mA cm−2.  相似文献   

12.
通过在NH4F+H2O的乙二醇溶液中阳极氧化铁箔,制备了纳米多孔结构的铁氧化物(Fe2O3–Fe3O4),然后在纳米多孔中电沉积镍,再经过400°C退火0.5 h,获得了镍与纳米多孔氧化铁的复合材料(Fe2O3–Fe3O4/Ni)。考察了电流密度和时间对镍沉积的影响。用扫描电镜、能谱仪、X射线衍射仪表征了复合材料的表面形貌、元素组成和物相,测试了其电化学性能并与未经电沉积镍的纳米多孔氧化铁(Fe2O3–Fe3O4)比较。结果表明,氧化铁由Fe2O3和Fe3O4组成。镀镍的最佳电流密度为2.0 m A/dm2,时间30 s。该纳米多孔Fe2O3–Fe3O4/Ni复合材料作为锂离子电池负极材料表现出更好的电化学性能──经过50次充放电循环后的放电比容量仍有438.3 m A·h/g,而Fe2O3–Fe3O4电极的放电比容量仅为110.6 m A·h/g。Fe2O3–Fe3O4/Ni电极的循环稳定性和倍率性能优异。  相似文献   

13.
《Ceramics International》2021,47(22):31138-31148
Copper oxides (CuxO) play an active role in the field of binder-free electrodes for supercapacitors due to their own advantages, including high theoretical capacity, non-toxicity, low cost, etc. Developing mild and cheap process to prepare CuxO nanomaterials would broad its application in supercapacitors. In this paper, copper oxide is used as an active material and copper foam (CF) is chosen as a substrate to synthesize metal oxide-based electrodes by an in-situ oxidation method. Ingeniously, the availability of copper foam has a dual nature encompassing as a collector as well as a copper source. The as-obtained CuxO/CF-60 electrode possesses an area capacitance of 354.6 mF cm−2 under 2 mA cm−2. It also has superior cycle stability with 93.8 % of initial capacitance undergo 5000 charge-discharge cycles. Moreover, the all-solid-state asymmetric supercapacitor, combining CuxO/CF-60 and activated carbon (AC) pasted on nickel foam (NF) as the respective positive and negative electrodes, exhibits an energy density of 25 μWh cm−2 when power density reaches 3 mW cm−2. The CuxO/CF-60//AC/NF device displays better cycling stability as 80.2 % of initial capacitance after 5000 cycles. This work provides a simple way for designing CuxO based electrodes and lays the foundation for subsequent improvements in electrochemical performance.  相似文献   

14.
《Ceramics International》2023,49(7):10411-10419
In this work, FeCo2O4 microflowers (MFs) and microparticles (MPs) were respectively prepared at different temperatures via a wet chemical method, along with a post annealing treatment in air. These MFs and MPs exhibited huge specific surface area and a large number of mesopores. Several electrochemical tests were conducted in a three-electrode configuration. The FeCo2O4 MFs delivered a specific capacity of 301.3C g?1, higher than 253.9C g?1 for FeCo2O4 MPs. A hybrid supercapacitor (HSC) device was assembled with FeCo2O4 as cathode and activated carbon (AC) as anode to investigate the practical applications in electrochemical energy storage. The FeCo2O4 MFs//AC HSC delivered a capacity of 107.2C g?1 at 1 A g?1 and an energy density (Ed) of 25.7 W h kg?1 at 862.6 W kg?1, respectively, while the FeCo2O4 MPs//AC HSC showed an Ed of 23.8 W h kg?1 at the power density (Pd) of 878.9 W kg?1. The two HSCs showed little capacity decay after 3000 cycles at 6 A g?1. The capacity of FeCo2O4 MFs and the obtained Ed of HSC were in a high status among those of transition metal oxides (TMOs)-based electrodes reported earlier. The current synthetic strategy can be used as a reference to the synthesis of other similar electrochemical materials for HSC electrodes.  相似文献   

15.
《Ceramics International》2017,43(6):5095-5101
To improve the electrochemical properties of Co3O4 for supercapacitors application, a hierarchical Co3O4@ZnWO4 core/shell nanowire arrays (NWAs) material is designed and synthesized successfully via a facile two-step hydrothermal method followed by the heat treatment. Co3O4@ZnWO4 NWAs exhibits excellent electrochemical performances with areal capacitance of 4.1 F cm−2 (1020.1 F g−1) at a current density of 2 mA cm−2 and extremely good cycling stability (99.7% of the initial capacitance remained even after 3000 cycles). Compared with pure Co3O4 electrodes, the results prove that this unique hierarchical hybrid nanostructure and reasonable assembling of two electrochemical pseudocapacitor materials are more advantageous to enhance the electrochemical performance. Considering these remarkable capacitive behaviors, the hierarchical Co3O4@ZnWO4 core/shell NWAs nanostructure electrode can be revealed promising for high-performance supercapacitors.  相似文献   

16.
通过一步电化学沉积法在泡沫镍(Ni foam,NF)集流体上制备了3D硫化镍(Ni3S2)材料,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)等对所制备材料的物化结构和形貌进行了表征,并采用循环伏安法(CV)、恒流充放电法(GCD)研究了其作为超级电容器电极的电化学性能。测试结果表明,制备的Ni3S2/NF-10材料具有相互连接的3D结构,表现出优异的赝电容性能。在1 A/g电流密度下,比电容高达2850 F/g。将电流密度提高到10 A/g,该材料比电容仍能达到1972 F/g,说明其具有优异的倍率性能。测试结果表明所制备的Ni3S2材料有望应用于电化学储能领域。  相似文献   

17.
A MnO2/carbon nanotube (CNT) nanocomposite was synthesised using a simple hydrothermal treatment. The nanocomposite exhibits a CNT core/MnO2 porous sheath hierarchy architecture, which makes it promising as an electrode material for supercapacitors. An asymmetric supercapacitor based on activated carbon (AC) as anode, MnO2/CNT nanocomposite as cathode and 1M Na2SO4 solution as electrolyte was assembled in a Swagelok cell. The full cell exhibits excellent power capability, cycling stability and a high energy density of 23 W h/kg at a power density of 330 W/kg based on the total mass of the active electrode materials. This AC//MnO2/CNT asymmetric supercapacitor is promising for high-power applications due to its high energy density and power density.  相似文献   

18.
In this paper, a novel Co3O4 micro-bundles structure (Co3O4 MBs) was obtained at 120 °C after a hydrothermal reaction for 24 h and followed by an annealing treatment at 300 °C in air. The unique Co3O4 MBs are constructed by many adjacent flakes with 0.4 μm in thickness, and exhibit a large surface area of 81.2 m2 g?1 and a mean pore diameter of 6.14 nm, which may facilitate a sufficient contact with electrolyte and then shorten the diffusion pathway of ions. A remarkable electrochemical behavior including specific capacity of 282.3 C g?1 at 1 A g?1 and 205.9 C g?1 at 10 A g?1, and an excellent cycling performance with 74.6% capacity retention after 4000 charge-discharge process at 5 A g?1 are achieved when the test of Co3O4 MBs-modified electrode is performed using three-electrode configuration. Additionally, a hybrid supercapacitor (HSC) was fabricated with the obtained Co3O4 MBs as positive electrode and commercial activated carbon (AC) as negative electrode. The HSC exhibits a specific capacity of 144.1 C g?1 at 1 A g?1 and 126.4% capacity retention after 5000 cycles at 5 A g?1. An energy density of 38.5 W h kg?1 can be obtained at a power density of 962.0 W kg?1, and 29.5 W h kg?1 is still retained at 8532.5 W kg?1. The simple synthetic strategy can be applicable to the synthesis of other transition metal oxides with superior electrochemical performance.  相似文献   

19.
采用湿法制备纳米Co_2O_4,并与碳纳米管掺杂,制备出纳米CO_3O_4-碳纳米管复合电极。纳米Co_3O_4与碳纳米管质量比为90:5。制备的复合电极表现出了良好的超级电容性能,复合电极单电极比电容达233.32F·g~(-1),与纯Co_3O_4电极相比,单电极比电容容提高20%。  相似文献   

20.
《Ceramics International》2016,42(13):14963-14969
Nanostructured spinel NiMn2O4 arrays have been fabricated by a facile hydrothermal approach and further investigated as binder-free electrode for high-performance supercapacitors. Compared with Mn3O4, NiMn2O4 exhibited higher specific capacitances (662.5 F g−1 and 370.5 F g−1 in different electrolytes at the current density of 1 A g−1) and excellent cycling stability (~96% capacitance retention after 1000 cycles) in a three-electrode system. Such a novel microstructure grown directly on the conductive substrate provided sufficient active sites for redox reaction resulting in their enhanced electrochemical behaviors. Their improved performances suggested that ultrathin sheet-like NiMn2O4 arrays on Ni foam substrate were a promising electrode material for supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号