首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To enhance the display quality of light-emitting diodes (LEDs), it is of great significance to exploit green/yellow-emitting phosphors with narrow emission band, high quantum yield, and excellent color purity to satisfy the application. Herein, orthophosphate-based green/yellow-emitting Na3Tb(PO4)2:Ce3+/Eu2+ (NTPO:Ce3+/Eu2+) phosphors have been successfully synthesized by a facile solid-state reaction method. The absorption band of NTPO samples was extended to the near-ultraviolet region and the absorption efficiency was significantly improved owing to a highly efficient energy transfer from Ce3+/Eu2+ ion to Tb3+ ion in NTPO host certified by time-resolved PL spectra. Upon 300 nm excitation, the NTPO:Ce3+ is characterized by ultra-narrow-band green emission of Tb3+ with an absolute quantum yield of 94.5%. Unexpectedly, NTPO:Eu2+ emits bright yellow light with a color purity of 73% as a result of the blending of green light emission from Tb3+ and red light emission from Eu3+. The thermal stability has been improved by controlling the stoichiometric ratio of Na+. The prototype white LED used yellow-emitting NTPO:Eu2+ phosphor has higher color-rendering index (Ra = 83.5), lower correlated color temperature (CCT = 5206 K), and closer CIE color coordinates (0.338, 0.3187) to the standard white point at (0.333, 0.333) than that used green-emitting NTPO:Ce3+ phosphor, indicating the addition of the yellow light component improved the Ra of the trichromatic (RGB) materials.  相似文献   

2.
Developing phosphors with narrow band emission and excellent performance is the main goal of current leading research. In this study, a novel narrow band blue-emitting phosphor Rb2ZrSi3O9: Eu2+ was prepared that can be fully excited by near ultraviolet (NUV) light, emits a bright blue light peak at 470 nm, and has a full width at half maximum (FWHM) of 60 nm. The synthesized Rb2ZrSi3O9: Eu2+ had excellent photoluminescence properties that were reflected in its good thermal stability (up to 82%) and high internal quantum efficiency (up to 75%). These remarkable luminescence properties were mainly ascribed to the highly symmetric and dense crystal structure composed of [Si3O9]6- ring pairs. Multiple emission centers in the Rb2ZrSi3O9: Eu2+ phosphor were confirmed through the photoluminescence (PL) spectra and time-resolved (PL) spectra. A bright warm WLED device with a low correlated color temperature (3386 K) and high color-rendering index (CRI~89.3) was produced by combining the blue phosphor with (Sr, Ba)2SiO4: Eu2+ and CaAlSiN3: Eu2+ and NUV (380 nm). The results indicate that Rb2ZrSi3O9: Eu2+ could be a promising phosphor for use in WLEDs.  相似文献   

3.
Herein, a series of novel Na2GdMg2(VO4)3:Eu3+ (NGMVO:Eu3+) red phosphors were elaborated by conventional solid-state reaction process. Their structural features, luminescent properties, energy transfer were researched at length. XRD patterns indicate that NGMVO:Eu3+ crystallized in single cubic garnet structure. Under the excitation of near ultraviolet light at 356 nm, the emission spectra of NGMVO host could be divided in two parts that resulted from 3T21A1 and 3T11A1 transitions of VO43?. While NGMVO:Eu3+ phosphors show intense sharp red emission peaks including 590, 610, 652 and 706 nm that originated from 5D07FJ (J = 1–4) transitions of Eu3+, respectively. The optimal concentration of Eu3+ is 0.7. Importantly, NGMVO:0.7Eu3+ sample presents high energy transfer efficiency (89 %) and high external quantum efficiency (48.3 %). Besides, its emission intensity remains 79 % at 420 K compared with that at 300 K, proving the good thermal stability of phosphors. All above results suggest that NGMVO:Eu3+ red phosphors have latent applications in white light emitting diodes.  相似文献   

4.
In this work, a new red phosphor with high color purity, Eu3+ ions doped Ba(Mg1/3Nb2/3)O3 phosphor has been prepared by wet chemical method. The structure analysis suggests BMN:x%Eu phosphors have a hexagonal phase and Ba2+ ions are replaced by Eu3+ ions in BMN. Upon excitation of NUV light, the BMN:x%Eu phosphors emit strong red light around 615?nm, derived from the 5D0-7F2 transition of Eu3+ ions. The relationship between luminescent properties and structure of BMN:x%Eu was discussed. The Judd-Ofelt intensity parameters (Ω2, Ω4) were calculated to analyze the asymmetry of the Eu3+ ions site occupancy further, and the quantum efficiency of BMN:3%Eu was found to be 77.26%. In addition, the decay curve indicates the decay time(τ) of BMN:3%Eu is determined to be 1.34?ms and Eu3+ ions occupy only one type of site. The CIE chromaticity coordinate (0.656,0.344) of BMN:3%Eu is quite close to the red phosphors standard value (0.670, 0.330), which indicates BMN:x%Eu can be a suitable red phosphor used in NUV-based white LEDs.  相似文献   

5.
Laser lighting is superior to light-emitting diodes (LEDs) in brightness, beam aperture and efficiency, which largely depends on the light extraction efficiency and thermal properties of color converters. In this paper, we proposed to improve the light extraction efficiency of red-emitting AlN-CaAlSiN3:Eu composite phosphor ceramics by controlling the light scattering, and to improve the thermal conductivity of the phosphor ceramics by increasing grain size. The composite phosphor ceramics with moderate light scattering and high thermal conductivity can be obtained by gas pressure sintering (GPS) and the followed hot isostatic pressing (HIP). The saturation threshold of the sample is increased from 7.0 to 10.8 W, and the luminous flux is enhanced from 32.3 to 51.0 lm after the HIP post-treatment, which is 55.5% higher than the previously reported dense AlN-CaAlSiN3:Eu composite phosphor ceramics (32.8 lm). This work emphasizes the role of pore size distribution in light extraction efficiency of phosphor ceramics.  相似文献   

6.
《Ceramics International》2021,47(21):30156-30163
A new Eu2+, Dy3+: Sr2B5O9Cl phosphor with long persistence was synthesized in a reducing atmosphere by a solid-state reaction process. The pure-phase phosphor was obtained by calcination at 900 °C. The introduction of Eu2+ into the lattice of the matrix resulted in a broad blue emission centered at 423 nm, which was due to the characteristic 4f65d1 to 4f7 energy transfer of Eu2+ ions. Both Eu-doped and Dy/Eu-codoped phosphors displayed afterglow behaviors due to the electron traps generated by the incorporation of tri-valanced rare earth cations into the original Sr lattice sites. The afterglow of Eu2+: Sr2B5O9Cl and Eu2+, Dy3+: Sr2B5O9Cl phosphors showed standard double exponential decay behaviors, and the Eu2+/Dy3+ co-doped sample demonstrated better afterglow properties than Eu2+-doped one. A longer lifetime for the electrons was confirmed after the afterglow decay curve simulation. Based on the analysis of thermally stimulated luminescence (TSL), the difference in afterglow was attributed to the different trap concentrations induced by the Dy3+ (Eu3+) doping in the Sr2B5O9Cl matrix.  相似文献   

7.
《Ceramics International》2021,47(24):34721-34731
A series of Sr9Y(PO4)7:Eu3+ and Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphors were prepared via a high-temperature solid-state method, Gd3+ ion was co-doped in Sr9Y(PO4)7:Eu3+ as sensitizer to enhance the luminescence property. The X-ray diffraction results verify that the structure of the as-prepared samples is consistent with the standard Sr9Y(PO4)7 phase. All the Sr9Y(PO4)7:Eu3+ samples show both characteristic emission peaks at 594 nm and 614 nm under near-ultraviolet excitation of 394 nm. The co-doping of Gd3+ significantly improves the luminescence intensity of the Sr9Y(PO4)7:Eu3+ phosphors due to the crystal field environment effect and energy transfer of Gd3+→Eu3+ caused by the introduction of Gd3+, especially Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+, which emission intensity is higher than that of Sr9Y(PO4)7:0.11Eu3+ by 1.21 times. The color purity and lifetime of Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+ phosphor are 88.26% and 3.7615 ms, respectively. A w-LED device was packaged via coating the as-prepared phosphor on n-UV chip of 395 nm with commercial phosphors. These results exhibit that the Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphor can be used as a red component in the w-LEDs application.  相似文献   

8.
《Ceramics International》2023,49(1):579-590
A novel single-phase trivalent europium activated red-emitting SrLaNaTeO6 phosphor was first synthesized in a process of traditional high-temperature solid-state. The phase purity, morphology, and spectroscopy of the prepared phosphor were analyzed. Under 395 nm excitation, the photoluminescence (PL) spectra of the SrLaNaTeO6:Eu3+ products mainly contained five dominant sharp peaks. The intense red emission peak at 615 nm was the typical 5D07F2 electric dipole transition of Eu3+. The optimum product of high quenching concentration was the SrLaNaTeO6:0.90Eu3+, which reached a high internal quantum efficiency (IQE) of 90.6%. The SrLaNaTeO6:0.90Eu3+ was estimated to have Rc of 6.57 Å and possessed high color purity of 100.0%. The phosphors exhibited excellent thermal stability and high activation energy (Ea = 0.29 eV). The prepared white light-emitting diode (WLED) had a high color rendering index (CRI) Ra of 92 and a low correlated color temperature (CCT) of 5008 K. In conclusion, the phosphors have potential as red components for WLEDs.  相似文献   

9.
A new type of Bi3+,Eu3+ single- and co-doped Na3.6Y1.8(PO4)3 phosphate phosphors were manufactured using conventional high-temperature solid-state reaction technique to explore their application for solid-state lighting. The crystal structure, luminescent properties, luminescent mechanism and quantum efficiency were thoroughly explored. Results show that there are two crystallization sites for Bi3+ and Eu3+ ions. Upon the excitation of 342 and 373 nm, Bi3+ single-doped phosphors exhibit green and blue emission, derived from the 3P1 to 1S0 transition of Bi3+ located in different occupancy sites. Thanks to radiative energy transfer process from Bi3+ to Eu3+, adjustable emission could be acquired by altering Eu3+ content in co-doped phosphors. Pure white-light emission with quantum efficiency value of 22.9% can be realized in Na3.6Y1.8(PO4)3:0.01Bi3+,0.1Eu3+ sample and the integrated intensity of white light emission at 417 K remains 85% of that at room temperature. Our results indicate that Na3.6Y1.8(PO4)3:Bi3+,Eu3+ phosphors have feasible application in high-power ultraviolet driven solid-state lighting.  相似文献   

10.
Pyroxene-type phosphors were widely developed due to the advantages of high chemical stability, luminous efficiency, and low production cost. In this contribution, a series of Eu2+/Tb3+ co-doped Ca0.75Sr0.2Mg1.05Si2O6 (CSMS) phosphors with pyroxene structure were successfully synthesized by the solid-state method. Under the 340 nm excitation, the emission peaks of the phosphor show a redshift with the increase of Eu2+ concentration. The emitting color of Eu2+/Tb3+ co-doped samples shows a redshift attributed to the energy transfer from Eu2+ to Tb3+. Simultaneously, acquired thermometer exposes superbly temperature-sensitive properties (Sa and Sr having maximum values 4.7% K−1 and 0.6% K−1, respectively) over the cryogenic temperature range (77–280 K). Furthermore, it has good stability and precision at cryogenic temperatures, indicating that CSMS:0.03Eu2+/0.03Tb3+ phosphor is a very promising fluorescent material suitable for cryogenic temperature sensing.  相似文献   

11.
To achieve high color rendering and proper color temperature, a red color converter is essential for phosphor-converted white lighting devices. CaAlSiN3:Eu2+ (CASN) is a highly suitable red phosphor for white light-emitting diodes. However, it can be hardly used in high-power laser lighting due to poor thermal/chemical performance of the phosphor/silicone resin mixture. A series of all-inorganic CASN-based phosphors (e.g., composite ceramic and phosphor-in-glass) were developed to avoid the use of resin. However, new challenges emerged: none of them showed sufficient luminous efficacy (i.e., >50 lm/W) and adequate saturation-threshold (i.e., >30 W or 10 W/mm2). Here, we report a facile fabrication of CASN/glass composite films using a simple and efficient blade-coating method. Upon 450 nm excitation, the resultant composite film presents a high internal quantum efficiency of ~83%, comparable to that of pristine CASN powder (~90%). When irradiated with a blue laser, the composite film shows a record high luminous efficacy of 82 lm/W. Furthermore, its saturation threshold was investigated in high power and high power density mode, respectively. When measured in high power mode, it shows a high saturation threshold over 29.7 W (1.75 W/mm2), thus achieving a high luminous flux of 1576 lm; when measured in high power density mode, it shows a saturation threshold of ~10.2 W/mm2 (1.13 W). With abovementioned excellent properties, the CASN/glass composite film has great potential for use in high-power and high color rendering laser lighting.  相似文献   

12.
In this study, Sm3+-doped double-perovskite Mg2InSbO6 phosphors were synthesized via high-temperature solid-state reaction. Mg2InSbO6 belongs to the double-perovskite family with a space group of R (No.148). The photoluminescence (PL) spectrum illustrates that Mg2InSbO6:0.05Sm3+ phosphor can emit intense orange-red emission light at 607 nm due to the 4G5/26H7/2 transition. The optimum concentration of Mg2InSbO6:xSm3+ is confirmed to 0.05 mol. The asymmetric ratio (4G5/26H9/2/4G5/26H5/2) of Mg2InSbO6:0.05Sm3+ phosphor is 2.73. The quenching temperature exceeds 500 K, illustrating that Mg2InSbO6:Sm3+ sample has excellent heat resistance. The high color purity and correlated color temperature (CCT) of Mg2InSbO6:Sm3+ phosphors are obtained. Furthermore, a white light-emitting diode (w-LED) is successfully fabricated, possessing CCT of 6769 K and high color rendering index (Ra) of 89. Therefore, the orange-red-emitting Mg2InSbO6:Sm3+ phosphors exhibit great potential to apply in solid-state lighting fields.  相似文献   

13.
Pc-WLEDs are considered to play a spectacular role in future generation light sources in view of their outstanding energy efficiency. In this regard, Eu3+ activated BaY2ZnO5 phosphor was prepared and investigated by XRD, PL and SEM analyses. Rietveld refinement analysis was carried out to confirm the structure of the synthesized phosphor. The prepared phosphor shows an intense red emission around 627 nm under excitation by near UV light. The 5D0-7F2 transition intensity of the prepared phosphor is three times higher compared to the commercial (Y,Gd)BO3:Eu3+ red phosphor. The CIE colour coordinates of BaY2ZnO5:Eu3+ (9mol%) phosphor corresponds to be (0.6169, 0.3742) and it has a high 97.9 % colour purity. The obtained results reveal the utility of BaY2ZnO5:Eu3+ phosphor as an efficient red component in WLEDs, anti-counterfeiting and fingerprint detection applications.  相似文献   

14.
《Ceramics International》2017,43(12):8824-8830
A series of Eu2+ and Mn2+ co-doping Sr3GdLi(PO4)3F phosphors have been synthesized through high temperature solid state reaction. Eu2+ single doped Sr3GdLi(PO4)3F phosphors have an efficient excitation in the range of 230–430 nm, which is in good agreement with the commercial near-ultraviolet (n-UV) LED chips, and gives intense blue emission centering at 445 nm. The critical distance of the Eu2+ ions in Sr3GdLi(PO4)3F is computed and demonstrated that the concentration quenching mechanism of Eu2+ is mostly caused by the dipole-dipole interaction. By co-doping Eu2+ and Mn2+ ions in the Sr3GdLi(PO4)3F host, the energy transfer from Eu2+ to Mn2+ that can be discovered. With the increase of Mn2+ content, emission color can be adjusted from blue to white under excitation of 380 nm, corresponding to chromatic coordinates change from (0.189, 0.108) to (0.319, 0.277). The energy transfer from Eu2+ to Mn2+ ions is proven to be a dipole-dipole mechanism on the basis of the experimental results and analysis of photoluminescence spectra and decay curves. This study infers that the obtained Sr3GdLi(PO4)3F:Eu2+, Mn2+ phosphors may be a potential candidate for n-UV LEDs.  相似文献   

15.
Sc2W3O12 is an important host matrix for rare-earth doped luminescence. However, the conventional method to prepare the material is solid-state reaction, which results into coarse and irregular morphologies. In this work, Eu3+ doped Sc2W3O12 phosphors with high crystallinity and pure phase were successfully synthesized via one-step hydrothermal method. It was found that the crystalline phase changed from Sc2W3O12 phase to Na4Sc2(WO4)5 phase when the molar ratio between Sc(NO3)3 and Na2WO4 decreased. The temperature-dependent X-ray diffraction analysis was performed to prove the negative thermal expansion property of Sc2W3O12. A systematic study on the effect of reaction time, temperature and Eu3+ doping concentration was explored. It was also found that the as-prepared samples displayed tunable emission colors, ranging from blueish white to orange red. Particularly, the white light emission with the chromaticity coordinate of (0.3395, 0.3289) can be realized in Sc2W3O12: 5% Eu3+. What's more, the photoluminescence properties of the samples were investigated under different ambient temperatures between 97 and 280?K. The result clearly showed energy transfer between Eu3+ and WO42?. The above results suggested that Sc2W3O12:Eu3+ can be excellent candidate for solid-state lasing, panel display and WLEDs.  相似文献   

16.
A single‐phase full‐color emitting phosphor Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ has been synthesized by high‐temperature solid‐state method. The crystal structure is measured by X‐ray diffraction. The emission can be tuned from blue to green/red/white through reasonable adjustment of doping ratio among Eu2+/Tb3+/Mn2+ ions. The photoluminescence, energy‐transfer efficiency and concentration quenching mechanisms in Eu2+‐Tb3+/Eu2+‐Mn2+ co‐doped samples were studied in detail. All as‐obtained samples show high quantum yield and robust resistance to thermal quenching at evaluated temperature from 30 to 200°C. Notably, the wide‐gamut emission covering the full visible range of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ gives an outstanding thermal quenching behavior near‐zero thermal quenching at 150°C/less than 20% emission intensity loss at 200°C, and high quantum yield‐66.0% at 150°C/56.9% at 200°C. Moreover, the chromaticity coordinates of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ keep stable through the whole evaluated temperature range. Finally, near‐UV w‐LED devices were fabricated, the white LED device (CCT = 4740.4 K, Ra = 80.9) indicates that Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ may be a promising candidate for phosphor‐converted near‐UV w‐LEDs.  相似文献   

17.
Transparent borosilicate glasses doped with Dy3+, Sm3+ and Dy3+/Sm3+ were made by a melt-quenching method. And glass ceramics (GCs) containing novel Na5Y9F32 nanocrystals were developed by heating the precursor glasses (PGs) at a specified temperature. The related crystalline phase and the morphologies of cubic Na5Y9F32 nanocrystals inside GCs were examined further. When excited at various wavelength, the emission color can experience from yellow (0.3813, 0.4207) to white (0.3219, 0.3316) by tuning the Sm3+ content. The energy transfer (ET) among the Dy3+/Sm3+ ions is confirmed by decay curves with photoluminescence spectra and the maximum energy transfer efficiencies were estimated to be 73.23%. The mechanism of dipole-dipole interaction for energy transfer (ET) between Dy3+ and Sm3+ ions can be explained by the analysis of Inokuti-Hirayama (IH) model and the formula of Dexter's energy transfer. The prepared GCs exhibit good thermal stability with the rise of temperatures. These obtained results imply that the Dy3+/Sm3+ co-doped transparent GCs might be a meaningful material for white-light emitting diode (w-LED) applications.  相似文献   

18.
The exploration of appropriate inorganic phosphors with high color purity (CP) and low correlated color temperature (CCT) has always been a hot issue for solid state light applications. In this work, we have developed series of Sm3+ doped Li2NaBP2O8 (abbreviated as: LNBP) phosphors by means of the solid state synthesis route. The crystalline phase compositions, micromorphology, valence state of elements as well as photoluminescence properties were systematically illustrated. Upon the excitation wavelength at 400?nm, emission peaks are located at 561,597,643 and 699?nm, corresponding to the 4G5/26H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions of Sm3+ in the same order. The optimal doping amount of Sm3+ ions is 2?mol% for the reddish-orange photoluminescence of the LNBP:Sm3+ phosphor system. The critical energy transfer distance, mechanism of concentration quenching, CIE chromaticity coordinate, CP, CCT and internal quantum efficiency were extensively investigated. The title product might be considered as a promising candidate of phosphor in near UV-based warm white LEDs.  相似文献   

19.
《Ceramics International》2016,42(12):13476-13484
A novel green phosphor composed of Ca4LaO(BO3)3:Tb3+ (CLBO:Tb) has been synthesized by a combustion method with urea. Its crystal structure, temperature-dependent luminescence, and quantum yield (QY) have been characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectra with heating device and integrate sphere. No concentration quenching has been observed when all of La3+ ions are substituted with Tb3+ ions. Green phosphor Ca4TbO(BO3)3 (CTBO) has 200% luminescence intensity of commercially available phosphor LaPO4:Ce, Tb (LPO:Ce, Tb) under 378 nm excitation. The QY of CTBO is as high as 98%. Through a Dexter energy transfer mechanism, Eu3+ ions are efficiently sensitized by Tb3+, resulting in an emission with color tunable from green to red under ultraviolet excitation. A possible mechanism of energy transfer from Tb3+ to Eu3+ has been investigated by PL spectra and decay measurements. The energy transfer efficiency from Tb3+ to Eu3+ increases linearly with concentration of Eu3+ increasing.  相似文献   

20.
Pure and Eu3+‐activated Ca4La(VO4)3O phosphors were prepared via three‐step solid‐phase synthesis. The phase formation and structure were investigated by X‐ray diffraction (XRD) with Rietveld refinements. All the samples crystallized in an apatite‐type structure. The morphological properties were measured via by SEM and EDS measurements. Ca4La(VO4)3O is a new vanadate optical material with a direct band feature and a band energy of 3.1 eV. The undoped Ca4La(VO4)3O phosphor presents self‐activated yellow luminescence from 400 nm to 750 nm with a maximum wavelength of 525 nm originating from VO4 groups. Luminescence characteristics of Ca4La(VO4)3O indicate that the phosphor is not sufficient for practical applications. In Eu3+‐activated Ca4La(VO4)3O, there is an efficient energy transfer from VO4 to Eu3+ ions. The luminescence spectra, concentration quenching, decay curves, color chromaticity, and quantum efficiencies (QE) of Ca4La(VO4)3O:Eu3+ were investigated. The phosphor presents optimal Eu3+ doping concentration of about 20 mol%. The dominant red emission in Ca4La(VO4)3O:Eu3+ is 615 nm from electronic 5D07F2 dipole transitions. The quantum efficiency and the luminescence stability of the pure and Eu‐activated Ca4La(VO4)3O were reported. The luminescence was discussed on the structural characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号