首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper investigates the relationship between roughness and toughening mechanisms in hybrid epoxy nanocomposites with carbon nanotubes (CNT) and graphene nanoplatelets (GNPs). The role of adding a block copolymer (BC) to the studied systems was also investigated. The nanocomposites were prepared by means of high‐energy sonication and in situ polymerization. All nanocomposites presented higher numerical values for KIc than untoughened systems. The system containing 0.5 wt% of CNTs presented an increase of 35% in KIc compared to neat epoxy, and the hybrid nanocomposite, at the proportion of 1:1 (CNT:GNP), with 0.5 wt% total of nanoparticles and also containing 0.5 wt% of BC, had an increase of 34% compared to the neat epoxy. Systems with higher amounts of graphene showed the highest roughness values, having crack deflection/exfoliation between the GNP layers as the main toughening mechanism. On the other hand, systems with more CNTs presented a lower fracture surface roughness, and the main toughening mechanism was bridging/break‐up of the nanotubes. Hybrid systems have more types of mechanisms than simple ones. With only one type of nanoparticle, however, some of those mechanisms are not effective in increasing the toughness, only increasing the fracture surface roughness. POLYM. ENG. SCI., 59:1258–1269 2019. © 2019 Society of Plastics Engineers  相似文献   

2.
Addition of 0.5?wt% of graphene nanoplatelates (GNPs) and 1?wt% carbonnanotube (CNTs) in plasma sprayed Al2O3 coating showed the reduction of 93.25% in wear volume loss and 90.94% in wear rate. This could be attributed to the simultaneous effect of enhanced densification, presence of the transferred layer from the counterpart, strong interface between Al2O3, GNP and CNTs and toughening offered by the GNPs and CNTs. The lowest COF value of 0.27 was recorded on addition of 0.5?wt% of GNP in Al2O3 coating, which could be attributed to the graphitic lubrication on the worn track during the wear.  相似文献   

3.
Chemical vapor deposition (CVD) was used to achieve a homogeneous dispersion of carbon nanotubes (CNTs) on aluminum oxide (Al2O3) powder. This powder was plasma sprayed onto a steel substrate to produce a 96% dense Al2O3 coating with CNT reinforcement. Addition of 1.5 wt.% CNTs showed a 24% increase in the relative fracture toughness of the composite coating. The improvement in the fracture toughness is attributed to uniform dispersion of CNTs and toughening mechanism such as CNT bridging, crack deflection and strong interaction between CNT/Al2O3 interfaces. Wear and friction behavior of the CNT reinforced Al2O3 coating under dry sliding condition was investigated by ball-on-disk tribometer. With the increasing normal loads from 10 to 50 N, the wear volume loss and coefficient of friction of the coating increased, owing to transition from the mild to severe wear. Wear resistance of the Al2O3-CNT composite coating improved by ∼27% at 50 N. Coefficient of friction at 50 N was dependent on the competing phenomena of wear debris generation and graphitization due to pressure.  相似文献   

4.
《Ceramics International》2023,49(18):29709-29718
Mechanical alloying and spark plasma sintering (SPS) were used to prepare dense SiAlCN ceramic and SiAlCN ceramic toughened by SiC whiskers (SiCw) or graphene nanoplatelets (GNPs). The influences of different reinforcements on the microstructure and fracture toughness were investigated. The SiAlCN ceramic exhibited a fracture toughness of 4.4 MPa m1/2 and the fracture characteristics of grain bridging, alternative intergranular and transgranular fracture. The fracture toughness of SiCw/SiAlCN ceramic increased to 5.8 MPa m1/2 and toughening mechanisms were crack deflection, SiCw bridging and pull-out. The fracture toughness of GNP/SiAlCN ceramic increased significantly, which was up to 6.6 MPa m1/2. GNPs played an important role in grain refinement, which resulted in the smallest grain size. Multiple toughening mechanisms, including crack deflection, crack branch, GNP bridging and pull-out could be found. The better toughening effect could be attributed to the larger specific surface area of GNPs and the appropriate interface bonding between GNPs and matrix.  相似文献   

5.
《Ceramics International》2020,46(12):20068-20080
In this study, Al2O3–TiC composites synergistically reinforced with multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were prepared via spark plasma sintering (SPS). The effects of the MWCNT and GNP contents on the phase composition, mechanical properties, fracture mode, and toughening mechanism of the composites were systematically investigated. The experimental results indicated that the composite grains became more refined with the addition of MWCNTs and GNPs. The nanocomposites presented high compactness and excellent mechanical properties. The composite with 0.8 wt% MWCNTs and 0.2 wt% GNPs presented the best properties of all analysed specimens, and its relative density, hardness, and fracture toughness were 97.3%, 18.38 ± 0.6 GPa, and 9.40 ± 1.6 MPa m1/2, respectively. The crack deflection, bridging, branching, and drawing effects of MWCNTs and GNPs were the main toughening mechanisms of Al2O3–TiC composites synergistically reinforced with MWCNTs and GNPs.  相似文献   

6.
In the present study, graphene nanoplatelets (GNPs: 1–2 wt. %) reinforced TiN coating were successfully fabricated over titanium alloy using a reactive shroud plasma spraying technique. All coatings were completely oxide free, while the addition of GNPs suppressed the non-stoichiometric TiN0.3 phase. Improvement of 19%, 18% and 300% in hardness, elastic modulus and fracture toughness was achieved by mere addition of 2 wt. % GNP. The addition of GNP in TiN also reduced the wear volume loss and the wear rate of the coatings for the entire range of temperature (293–873 K). Moreover, GNPs also manifested the coefficient of friction (COF) of the coating. Post wear characterization revealed that the presence of GNP throughout the wear track even at 873 K. The multi-layer structure of GNPs assisted in long term lubricity to the surface and increased the wear resistance of the coating.  相似文献   

7.
In this study hybrid ternary polymeric nanocomposites based on carbon nanotubes (CNTs) and graphite nanoplatelets (GNPs) are examined for their enhanced transport properties, over mono-nanofiller composite systems, originated via a synergy mechanism. Using an epoxy as the host matrix, a number of CNTs/epoxy, GNPs/epoxy and hybrid CNTs/GNPs/epoxy specimens are processed and their electrical and thermal properties are characterized. Furthermore, these transport properties are also estimated using a set of recently developed computational models based on percolation analysis and statistical continuum mechanics. Results suggest that the models, in agreement with the experimental observations, confirm the presence of the synergy effect for both the electrical and thermal transport properties. Both the computational and experimental studies suggest incorporating miniscule amount of auxiliary nanofiller (ex. 10%wt CNTs compared to GNPs), boosts the electricalconductivity of the hybrid composites by several orders of magnitudes.Furthermore, the experimental measurements and the strong contrast computational models suggest that, owing to the formation of the hybrid CNT/GNP network, the hybrid CNT/GNP/polymer nanocomposites outperform their single-nanofiller counterpart configurations. The investigation affirms that the particle agglomeration severely affects the transport properties of the hybrid nanocomposites and it is the root cause for the conflicting results in the literature.  相似文献   

8.
For addressing the issue of low relative density, poor fracture toughness of boron carbide ceramics, carbon nanotubes (CNTs)-reinforced B4C-SiC ceramic composite material was prepared via spark plasma sintering (SPS), and the impact of CNTs on the strengthening and toughening of the composite was studied. The evidence revealed that an appropriate amount of CNTs can enhance the discharge effect and improve the compactness. As the CNTs content increased, the flexural strength and fracture toughness took on a tendency to first rise and then drop. After mixing .5 wt.% CNTs, the flexural strength and fracture toughness were 499 MPa and 5.38 MPa·m1/2, which increased by 59.4% and 28.4%, respectively. The transformation of fracture mode, grain refinement, bridging and pulling-out of CNTs efficiently enhance the mechanical properties.  相似文献   

9.
This work analyzes the morphology and behavior of hybrid composites reinforced with carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). In order to avoid the weak interface of laminar nanofillers, GNPs were functionalized with amine groups. Different tendencies were observed as a function of the measured property. Storage modulus showed a synergic trend, being the stiffness of hybrid CNT/GNP/epoxy composites higher than the corresponding ones measured in neat epoxy composites reinforced with CNTs or GNPs. In contrast, the thermal and electrical conductivity increased with the nanofiller addition, the final value of the mentioned properties in the hybrid composites was strongly influenced by specific graphitic nanofiller. Neat GNP/epoxy composites showed the highest thermal conductivity, while neat CNT/epoxy composites presented the highest electrical conductivity. This behavior is explained by the observed morphology. All composites exhibited a suitable nanofiller dispersion. However, on hybrid GNP/CNT/epoxy composites, CNTs tend to be placed between nanoplatelets, forming bridges between nanoplatelets. This morphology implies a less effective electrical network, limiting the synergic effect in the properties, which requires percolation. In spite of this, the hybrid GNP/CNT/epoxy composites showed a better combination of properties than the neat composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46475.  相似文献   

10.
Graphene‐nanoplateles (Gr) and multiwalled carbon nanotubes (CNTs) reinforced epoxy based composites were fabricated using ultrasonication, a strong tool for effective dispersion of Gr/CNTs in epoxy. The effect of individual addition of two different nanofillers (Gr and CNT) in epoxy matrix, for a range of nanofiller content (0.1–1 wt %), has been investigated in this study. This study compares mechanical and thermomechanical behavior of Gr and CNT reinforced epoxy. Gr reinforcement offers higher improvement in strength, Young's modulus, and hardness than CNT, at ≤0.2 wt %. However, mode‐I fracture toughness shows different trend. The maximum improvement in fracture toughness observed for epoxy‐Gr composite was 102% (with 0.3 wt % loading of Gr) and the same for epoxy‐CNT composite was 152% (with 0.5 wt % loading of CNT). Thorough microstructural studies are performed to evaluate dispersion, strengthening, and toughening mechanisms, active with different nanofillers. The results obtained from all the studies are thoroughly analyzed to comprehend the effect of nanofillers, individually, on the performance of the composites in structural applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46101.  相似文献   

11.
WC-10Co cemented carbides reinforced with 0, 0.5, 1, and 2 wt% graphene nanoplatelet (GNP) were fabricated by ball milling and spark plasma sintering (SPS). The microstructure, structural and phase analysis, hardness, and fracture toughness of WC-10Co/GNP composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and Vickers indenter. Tribological behaviors of the fabricated composites against an alumina counterface were studied using a pin on disk configuration. It was found that GNP refined the microstructure, increased the fracture toughness, and postponed the stable-to-unstable friction transition. While transgranular fracture and crack deflection were observed in the base composite, crack bridging, micro-crack formation, and crack deflection were the major toughening mechanisms in GNP-reinforced cemented carbides. The addition of 1 wt% GNP resulted in the highest hardness and wear resistance. However, at higher GNP contents, both hardness and wear resistance decreased due to the agglomeration of GNPs. Widespread abrasive grooving and Co binder extrusion were characterized as the main controlling mechanisms of wear in GNP-free cemented carbides. The wear of GNP-reinforced cemented carbides was dominated by the formation of a lubricating surface layer and its cracking or fragmentation. Plastic flow is much less likely to occur in the presence of GNPs.  相似文献   

12.
Epoxies are a class of thermoset polymers which find use in high performance applications. However, epoxies are inherently brittle and are poor conductors of electricity, which limits their ability to be employed in functional applications. Carbon nanomaterials have attracted considerable attention as filler materials, due to their combination of outstanding properties. In the present work, an epoxy polymer was modified with a hybrid nanofiller, consisting of graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) at a mass ratio of 9:1, using three-roll milling. Addition of 1 wt% resulted in an increase of eight orders of magnitude in the electrical conductivity and a 182% increase in the fracture energy, GIC, of the epoxy. CNTs contributed greatly in the reduction of the percolation threshold, which was 10 times lower than that of conventional GNP/epoxy composites, while the increase in toughness was entirely attributed to the GNPs, predominantly through the mechanism of crack deflection. The toughening contribution of the hybrid nanofiller was theoretically calculated using analytical modeling, which showed excellent agreement between the predicted and experimental values of GIC.  相似文献   

13.
We have developed multi-walled carbon nanotube/liquid crystalline epoxy composites and studied the effects of incorporation carbon nanotubes (CNTs) on the morphology, thermal and mechanical properties of the composites. The CNTs are functionalized by liquid crystalline (LC) 4,4′-bis(2,3-epoxypropoxy) biphenyl (BP) epoxy resin for the ease of dispersion and the formation of long range ordered structure. The epoxy functionalized CNT (ef-CNT) were dispersed in the LC BP epoxy resin that can be thermal cured with an equivalent of 4,4′-diamino-diphenylsulfone to form composite. The curing process was monitored by polarized optical microscopy. The results indicate the LC resin was aligned along the CNTs to form fiber with dendritic structure initially then further on to obtain micro-sized spherical crystalline along with fibrous crystalline. With homogeneous dispersion and strong interaction between nanotubes and matrix, the composite containing 2.00 wt.% ef-CNT exhibits excellent thermal and mechanical properties. When the amount of ef-CNT exceeds 2.00 wt.%, vitrification stage of curing is fast reached, which lowers the degree of conversion. As compared with the neat resin, the composite containing 2.00 wt.% ef-CNT increases the glass transition temperature by 70.0 °C, the decomposition temperature by 13.8 °C, the storage modulus by 40.9%, and the microhardness by 63.3%.  相似文献   

14.
Single suspended carbon nanofibers on carbon micro-structures were fabricated by directed electrospinning and subsequent pyrolysis at 900 °C of carbon nanotube/polyacrylonitrile (CNT/PAN) composite material. The electrical conductivity of the nanofibers was measured at different weight fractions of CNTs. It was found that the conductivity increased almost two orders of magnitude upon adding 0.5 wt.% CNTs. The correlation between the extent of graphitization and electrical properties of the composite nanofiber was examined by various structural characterization techniques, and the presence of graphitic regions in pyrolyzed CNT/PAN nanofibers was observed that were not present in pure PAN-derived carbon. The influence of fabrication technique on the ordering of carbon sheets in electrospun nanofibers was examined and a templating effect by CNTs that leads to enhanced graphitization is suggested.  相似文献   

15.
《Ceramics International》2023,49(8):12348-12359
Current work pursues generating controlled bimodal microstructure by plasma spraying of micrometer-sized Al2O3 and nanostructured spray-dried agglomerate with reinforcement of 20 wt% of 8 mol % yttria stabilized zirconia (8YSZ) and 4 wt% carbon nanotube (CNT) as potential thermal barrier coating (TBC) on the Inconel 718 substrate. Composite coatings exhibit bimodal microstructure of: (i) fully melted and resolidified microstructured region (MR), and (ii) partially melted and solid state sintered nanostructured regions (NR). Reinforcement with 8YSZ has led to an increase in hardness from ∼12.8 GPa (for μ-Al2O3) to ∼13.9 GPa in MR of reinforced Al2O3-YSZ composite. Further, with the addition of CNT in Al2O3-8YSZ reinforced composite, hardness of MR has remained similar ∼13.9 GPa (8YSZ reinforced) and ∼13.5 GPa (8YSZ-CNT reinforced), which is attributed to acquiescent nature and non-metallurgical bonding of CNT with MR. Indentation fracture toughness increased from 3.4 MPam0.5 (for μ-Al2O3) to a maximum of 5.4 MPam0.5 (8YSZ- CNT reinforced) showing ∼57.7% improvement, which is due to crack termination at NR, retention of t-ZrO2 (∼3.3 vol%) crack bridging, and CNT pull-out toughening mechanisms. Modified fractal models affirmed that the introduction of bimodal microstructure (NR) i.e., nanometer-sized- Al2O3, nanostructured 8YSZ and CNTs in the μ-Al2O3 (MR) contributes ∼44.6% and ∼72% towards fracture toughness enhancement for A8Y and A8YC coatings. An enhanced contribution of nanostructured phases in toughening microstructured Al2O3 matrix (in plasma sprayed A8YC coating) is established via modified fractal model affirming crack deflection and termination for potential TBC applications.  相似文献   

16.
《Polymer Composites》2017,38(9):2001-2008
Carbon nanotube (CNT)/carbon fiber (CF) hybrid fiber was fabricated by sizing unsized CF tow with a sizing agent containing CNT. The hybrid fiber was used to reinforce a thermoplastic polymer to prepare multiscale composite. The mechanical properties of the multiscale composite were characterized. Compared with the base composite (traditional commercial CF), the multiscale composite reinforced by the CNT/CF hybrid fiber shows increases in interlaminar shear strength (ILSS) and impact toughness. Laminate containing CNTs showed a 115.4% increase in ILSS and 27.0% increase in impact toughness. The reinforcing mechanism was also discussed by observing the impact fracture morphology. POLYM. COMPOS., 38:2001–2008, 2017. © 2015 Society of Plastics Engineers  相似文献   

17.
Hybrid silica–carbon nanotube (CNT) particles with a radial symmetry were produced by the growth of nanotubes onto spherical, mesoporous silica gel particles using the floating catalyst chemical vapour deposition (FC-CVD) method. Characterisation of the hybrid particles, using electron microscopy, Raman spectroscopy and thermogravimetry showed the geometry and porosity of the silica particles to influence the alignment and density of the CNTs produced. CNT growth initiated in the pores of the gel particles and three hours of CVD growth were required to get extensive surface coverage. In the early stages of growth, the reactants diffused inside the mesoporous silica and consequently the CNTs grew mainly within the silica gel rather than on the surface. Some indication of catalyst templating was observed within the smaller (<10 nm) pores, but this templating did not result in aligned CNTs. Composite films of hybrid silica–CNT particles in poly(vinyl alcohol) were cast and their impedance measured. An electrical percolation threshold of 0.62 wt.% was found for the hybrid particles, of which 0.20 wt.% were CNTs.  相似文献   

18.
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) at different mix ratios were dispersed by ultrasonication into an epoxy matrix and the effects of CNT:GNP ratios on the mechanical and electrical properties of the hybrid composites were investigated. The combination of CNT and GNP in a ratio 8:2 was observed to synergistically increase flexural properties and to reduce the electrical percolation threshold for the epoxy composites, indicating easier formation of a conductive network due to the improved state of CNT dispersion in the presence of GNPs. The state of dispersion was evaluated at different length scales by using optical microscopy, UV–Vis spectroscopy, rheological measurements, scanning electron microscopy, transmission electron microscopy and sedimentation tests. The Fourier transform infrared spectra for CNT and GNP indicate that the GNPs contain oxygen moieties responsible for better interactions with the epoxy matrix.  相似文献   

19.
In this study, 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP)/Al2O3/graphene nanoplatelets (GNPs) medical ceramic materials for manufacturing surgical scalpels were sintered in vacuum in an SPS–625HF furnace. The mechanical performances and microstructures of the composites were investigated, and the influence mechanisms of the sintering temperature and amount of added GNPs were studied. During the sintering process at 1400°C and 30 MPa for 5 min, the added GNPs enhanced the mechanical properties of the 3Y-TZP/Al2O3 composites. The results showed that the composite with .1 wt.% GNPs had 6.4% (910 ± 11 MPa) higher flexural strength than 3Y-TZP/Al2O3. The composite with .4 wt.% GNPs had 38.7% (12.95 ± .22 MPa m1/2) greater fracture toughness than 3Y-TZP/Al2O3. The main toughening mechanisms of 3Y-TZP/Al2O3/GNPs were crack bridging, crack deflection, crack branching, GNPs bridging, transgranular fracture structures, and phase transformation of t-ZrO1.95. The two-stage densification displacement curve appeared at the optimal sintering temperature of the materials, and the 3Y-TZP/Al2O3/GNPs composites with a two-stage densification displacement curve had excellent mechanical properties. The added GNPs can inhibit the grain growth during the sintering process, thereby refining the zirconia grains. With the increase in GNPs content, the grain size and flexural strength of the composites decreased gradually. However, higher content of GNPs was beneficial to improve the relative density and thermal diffusivity of 3Y-TZP/Al2O3/GNPs composite material.  相似文献   

20.
《Ceramics International》2021,47(19):26800-26807
Current study deals with the effect of carbon nanotube (CNTs) and graphene nanoplatelets (GNPs) reinforcement on the mechanical properties and the adhesion strength of plasma sprayed alumina (Al2O3) single splats, using in-situ picoindentation and nanoscratch test, respectively. The hardness of the Al2O3 splat was measured as 18 ± 5.3 GPa which increased to 34.22 ± 8.44 GPa on 1 wt% CNTs addition and to 42.5 ± 9.06 GPa on 0.5 wt% GNPs addition. Hybrid addition of CNTs and GNPs provided the maximum hardness value of 51.25 ± 8.76 GPa to the Al2O3 splat. Similar trend in the elastic modulus has been reported with a minimum value for Al2O3 splat, i.e. 159 ± 35.40 GPa, and maximum for the Al2O3 splat mixed synergistically with CNTs and GNPs (269 ± 43.12 GPa). Adhesion strength of the Al2O3 splat (0.21 ± 0.11 MPa) also showed a nearly 5-fold increase on hybrid addition of CNTs and GNPs with a maximum value of 1.08 ± 0.38 MPa. This improvement in the properties were due to the extremely high mechanical properties of CNTs and GNPs and better melting of the splats, which not only improved the densification but also provided a better interlocking between the splat and the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号