首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The catalyst with high activity and durability plays a crucial role in the hydrogen generation systems for the portable fuel cell generators. In the present study, a ruthenium supported on graphite catalyst (Ru/G) for hydrogen generation from sodium borohydride (NaBH4) solution is prepared by a modified impregnation method. This is done by surface pretreatment with NH2 functionalization via silanization, followed by adsorption of Ru (III) ion onto the surface, and then reduced by a reducing agent. The obtained catalyst is characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Very uniform Ru nanoparticles with sizes of about 10 nm are chemically bonded on the graphite surface. The hydrolysis kinetics measurements show that the concentrations of NaBH4 and NaOH all exert considerable influence on the catalytic activity of Ru/G catalyst towards the hydrolysis reaction of NaBH4. A hydrogen generation rate of 32.3 L min−1 g−1 (Ru) in a 10 wt.% NaBH4 + 5 wt.% NaOH solution has been achieved, which is comparable to other noble catalysts that have been reported.  相似文献   

2.
In this work, different shapes (powder and spherical) of ruthenium-active carbon catalysts (Ru/C) were prepared by impregnation reduction method for hydrogen generation (HG) from the hydrolysis reaction of the alkaline NaBH4 solution. The effects of temperature, amount of catalysts, and concentration of NaOH and NaBH4 on the hydrolysis of NaBH4 solution were investigated with different shapes of Ru/C catalysts. The results show that the HG kinetics of NaBH4 solution with the powder Ru/C catalysts is completely different from that with the spherical Ru/C catalysts. The main reason is that both mass and heat transfer play important roles during the reaction with Ru/C catalysts. The HG overall kinetic rate equations for NaBH4 hydrolysis using the powder Ru/C catalysts and the spherical catalysts are described as r = A exp (−50740/RT) [catalyst]1.05 [NaOH]−0.13 [NaBH4]−0.25 and r = A exp (−52,120/RT) [catalyst]1.00 [NaOH]−0.21 [NaBH4]0.27 respectively.  相似文献   

3.
Polymer template-Ru composite (Ru/IR-120) catalyst was prepared using a simple and fast method for generating hydrogen from an aqueous alkaline NaBH4 solution. The hydrogen generation rate was determined as a function of solution temperature, NaBH4 concentration, and NaOH (a base-stabilizer) concentration. The maximum hydrogen generation rate reached 132 ml min−1 g−1 catalyst at 298 K, using a Ru/IR-120 catalyst that contained only 1 wt.% Ru. The catalyst exhibits a quick response and good durability during the hydrolysis of alkaline NaBH4 solution. The activation energy for the hydrogen generation reaction was determined to be 49.72 kJ mol−1.  相似文献   

4.
A mesoporous carbon‐confined cobalt (Co@C) catalyst was fabricated by pyrolysis of macroscale Co‐metal–organic framework (MOF) crystals and used to catalyze NaBH4 hydrolysis for hydrogen production. To reveal the structural changes of cobalt nanoparticles, we characterized the fresh and used Co@C catalysts using X‐ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and N2 adsorption. This MOF‐derived Co@C exhibits high and stable activity toward NaBH4 hydrolysis. No obvious agglomeration of Co nanoparticles occurred after five consecutive runs, implying good resistance of Co@C composite to metal aggregation. The kinetics of NaBH4 hydrolysis was experimentally studied by changing initial NaBH4 concentration, NaOH concentration, and catalyst dosage, respectively. It was found that the hydrogen generation rate follows a power law: r = A exp (?45.0/RT)[NaBH4]0.985[cat]1.169[NaOH]?0.451 .  相似文献   

5.
Co–Cu–B, as a catalyst toward hydrolysis of sodium borohydride solution, has been prepared through chemical reduction of metal salts, CoCl2·6H2O and CuCl2, by an alkaline solution composed of 7.5wt% NaBH4 and 7.5wt% NaOH. The effects of Co/Cu molar ratio, calcination temperature, NaOH and NaBH4 concentration and reaction temperature on catalytic activity of Co–Cu–B for hydrogen generation from alkaline NaBH4 solution have been studied. X-ray diffraction (XRD), scanning electron microscope (SEM) and Nitrogen adsorption–desorption isotherm have been employed to understand the results. The Co–Cu–B catalyst with a Co/Cu molar ratio of 3:1 and calcinated at 400 °C showed the best catalytic activity at ambient temperature. The activation energy of this catalytic reaction is calculated to be 49.6 kJ mol−1.  相似文献   

6.
A Co/HTNT catalyst is developed by immobilizing Co on the surface of titanate nanotubes. The microstructure and composition of the catalyst are investigated with atomic absorption spectroscopy (AAS), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The developed Co/HTNT catalyst shows great performance in catalyzing NaBH4 hydrolysis. The hydrolysis of 25 mg NaBH4 catalyzed by 50 mg Co/HTNT in 10 g NaOH solution (12.5 wt%) provides a hydrogen production rate of 1.04 L min?1 gCo?1 at 30 °C, and the activation energy of the reaction is 29.68 kJ mol?1. The high catalytic activity and economical property make this catalyst a promising choice for on-site hydrogen production from NaBH4 hydrolysis.  相似文献   

7.
Influence of using as catalysis, Ni-Schiff Base complex which we previously synthesized [1] used to support with amberzyme oxirane resin (A.O.R.) polymer for increasing the catalytic activity in NaBH4 hydrolysis reaction, to hydrogen generation was studied. The prepared catalyst was characterized by using SEM, XRD, BET, FT-IR analyze technique. Polymer supported Ni-Schiff Base complex catalyzed NaBH4 hydrolysis reaction was investigated depending on concentration of NaBH4, concentration of NaOH, temperature, percentage of Ni complex in total polymer supported Ni-Schiff Base complex and amount of catalyst factors. The maximum hydrogen production rate from hydrolysis of sodium borohydride with nickel-based complex catalyst compared to the pure nickel catalyst is increased from 772 mL H2·g?1 cat.·min?1 to 2240 mL H2 g?1 cat.·min?1 [1], and with supported amberzyme oxirane resin polymer this nickel based complex catalyst was increased to 13000 mL H2·g?1 cat.·min?1 at 30 °C. The activation energy of complex catalyzed NaBH4 hydrolysis reaction was found as 25.377 kJ/mol. This work also includes kinetic information for the hydrolysis of NaBH4.  相似文献   

8.
Cyclic life of catalyst for hydrolysis of sodium borohydride is one of the key issues, which hinder commercialization of hydrogen generation from sodium borohydride (NaBH4) solution. This paper is aimed at promoting the cyclic life of Ru/Ni foam catalysts by employing an electro-deposition method. The effect of hydrolysis parameters on hydrolysis of sodium borohydride was studied for improving the catalytic performance. It is found that the hydrogen generation rate (HGR) of the hydrolysis reaction catalyzed by Ru/Ni foam catalyst can reach as high as 23.03 L min?1 g?1 (Ru). The Ru/Ni foam catalyst shows good catalytic activity after a cycleability test of 100 cycles by rinsing with HCl, which is considered as more effective method than rinsing with water for recovering the performance of Ru/Ni foam catalyst.  相似文献   

9.
In this study, the metallurgic sludge which contained oil and was obtained as waste of grinding, sharpening and milling parts was used in the production of hydrogen (H2) from sodium borohydride (NaBH4). The hydrolysis of NaBH4 with the metallurgic sludge catalyst was investigated depending on several parameters such as sodium hydroxide (NaOH) concentration, catalyst amount, NaBH4 concentration and temperature. The obtained metallurgic sludge catalyst was characterized by the XRD, FT-IR and SEM techniques and was evaluated for its activity in the H2 generation from NaBH4 hydrolysis. The maximum H2 production rate from the hydrolysis of NaBH4 with the metallurgic sludge catalyst was calculated as 9366 ml min−1.gcat−1. The value of activation energy was found as 48.05 kJ mol−1.  相似文献   

10.
Proposing a novel catalyst that achieves catalytic hydrolysis of metal hydrides is an important stage in developing a hydrogen storage system. In this study, a cross-linked gel brush-cobalt (0) composite (Co@P4VPGB@PMC) has been synthesized to obtain hydrogen from NaBH4 solution. The morphology, structure, and composition of the obtained catalyst have been characterized by, FTIR, SEM, EDX, BET, XRD, ICP-MS and XPS. The parameters that significantly affect the hydrolysis of NaBH4 (such as NaBH4 concentration, NaOH amount, catalyst amount, and temperature) have been investigated using response surface methodology (RSM), an optimization method that has gained increasing importance in recent years. The hydrogen generation rate (HGR) was 4499 mL/min gcat for Co@P4VPGB@PMC when the NaBH4 amount was 241.52 mM, NaOH amount 5 wt%, catalyst amount 10.55 mg and temperature 58.9 °C. Moreover, the apparent activation energy (Ea) for the catalytic hydrolysis reaction has been 41.27 kJmol-1 obtained under optimum conditions. Additionally, the Co@P4VPGB@PMC catalyst displayed significant reusability performance for up to five cycles without major loss of its activity. Compared with metal catalysts, this new cross-linked polymer gel brush-cobalt catalyst has excellent potential applications for hydrogen production by hydrolysis of metal hydrides due to its simple synthesis, low cost, and the easy availability of raw materials.  相似文献   

11.
In this study, we report for the first time the use of C. Vulgaris microalgal strain containing cellulose in the modified form to be used as a catalyst support material for the production of hydrogen from the methanolysis reaction of sodium borohydride (NaBH4). Acetic acid, phosphoric acid, and hydrochloric acid (HCl) at different concentrations and impregnation times were used for the protonation of cellulose in the microalgal strain. The cobalt ions were added to this modified support material and, C.Vulgaris microalgal strain-supported Co-B catalyst was obtained. XRD, BET, FTIR, XPS, ICP-MS, TEM, and SEM-EDX analysis were carried out for characterization of the sample. The maximum hydrogen production rate from the methanolysis reaction of NaBH4 with this catalyst was 13215 ml min−1 gcat−1. In addition, the activation energy was determined as 25.22 kJ/mol. At the same time, re-usability studies of the microalgal strain-supported Co-B catalyst were performed and it was found that there was no decrease in the % conversion for this catalyst, while the activity decreased. XRD, BET, FTIR, XPS, ICP-MS, TEM, and SEM-EDX.  相似文献   

12.
How to efficiently hydrolyze NaBH4 to H2 has been greatly concerned due to its theoretically high hydrogen storage capacity (10.8 wt. %). In this work, Ru–RuO2/C catalyst is prepared by the galvanic replacement reaction of Ni based material. By evaluating the hydrolysis activity, analyzing the structure and component of the catalysts and exploring the possible reaction channels, we find that Ru–RuO2/C has the excellent hydrolysis activity of 16.8 L H2 min1 gcat.1 in 5 wt. % NaBH4 and 1 wt. % NaOH solution at 323 K, which is higher than most data in open literature. The more reducible RuO2 (110) crystal at about 423 K plays an important role in the high hydrolysis activity of Ru–RuO2/C. The ruthenium oxide facilitates the dissociation of water, a rate-determining step of NaBH4 hydrolysis to H2, while Ru acts as an active phase for NaBH4 dissociation. A synergetic effect of RuO2 and Ru on Ru–RuO2/C is crucial to the high hydrolysis activity of sodium borohydride and it can also be kept in repeated experiments.  相似文献   

13.
Cu-Schiff base complex which we previously synthesized (Kilinc et al., 2012) is supported on Al2O3. The prepared catalyst is characterized by using SEM, XRD, BET, and FT-IR methods. And Al2O3-supported complex is used as a catalyst in NaBH4 hydrolysis reaction for hydrogen generation. NaBH4 hydrolysis reactions are investigated depending on the concentration of NaBH4 and NaOH, temperature, percentage of Cu complex, and amount of catalyst. Maximum reaction rates are 44,453.33 and 57,410.00 mL H2/g.cat.min at 30°C and 50°C, respectively. The activation energy of NaBH4 hydrolysis reaction is found as 225,775 kJ.mol?1. All the experimental results and literature comparisons show that Al2O3-supported Cu-Schiff base complex is a very effective catalyst in NaBH4 hydrolysis for H2 generation.  相似文献   

14.
In the present study, a cobalt-doped catalyst was prepared from chicken eggshell powder (CEP) biowaste to be used in the hydrolysis of sodium borohydride (NaBH4). In the presence of the prepared catalyst (CEPcat), possible effects of the parameters of NaOH concentration (%), catalyst amount (g), NaBH4 concentration (%), process temperature (oC) and reusability affecting the hydrolysis of sodium borohydride were examined. The CEPcat obtained was characterized with FT-IR, TGA, XRD, SEM and EDX analyses. The hydrogen generation rate (HGR) was determined as 432 mL gCo−1 min−1 in the presence of 1 g CEPcat, a CoO/CaO ratio of 10/90 and 1% NaBH4 concentration. The activation energy of the NaBH4 hydrolysis reaction was calculated as 16.78 kJ mol−1. After 16 reuses of the CEPcat there was no significant decrease in the hydrogen volume. Compared to the first use while there was an increase in the HGR. These results showed that the CEPcat prepared has a significant advantage over other catalysts for use in NaBH4 hydrolysis.  相似文献   

15.
In this study, it is aimed to investigate hydrogen (H2) generation from sodium borohydride (NaBH4) hydrolysis by multi-walled carbon nanotube supported platinum catalyst (Pt/MWCNT) under various conditions (0–0.03 g Pt amount catalyst, 2.58–5.03 wt % NaBH4, and 27–67 °C) in detail. For comparison, carbon supported platinum (Pt/C) commercial catalyst was used for H2 generation experiments under the same conditions. The reaction rate of the experiments was described by a power law model which depends on the temperature of the reaction and concentrations of NaBH4. Kinetic studies of both Pt/MWCNT and Pt/C catalysts were done and activation energies, which is the required minimum energy to overcome the energy barrier, were found as 27 kJ/mol and 36 kJ/mol, respectively. Pt/MWCNT catalyst is accelerated the reaction less than Pt/C catalyst while Pt/MWCNT is more efficient than Pt/C catalyst, they are approximately 98% and 95%, respectively. According to the results of experiments and the kinetic study, the reaction system based on NaBH4 in the presence of Pt/MWCNT catalyst can be a potential hydrogen generation system for portable applications of proton exchange membrane fuel cell (PEMFC).  相似文献   

16.
High-purity hydrogen can be generated by hydrolysis of sodium borohydride and used for operating portable proton exchange membrane fuel cells. The monolith supported catalyst is suitable for practical NaBH4-based hydrogen generation system due to its simple reactor structure miniaturizing for small size applications and easy separation from the spent solution. In the present study, a structured catalyst was prepared by wash-coating the Al2O3 sol over the wall of cordierite monolith followed by depositing Pt using incipient wet impregnation method; then the monolithic catalysts were characterized by XRF, XRD, SEM, HRTEM and XPS. The catalytic activity of the Pt-based monolithic catalyst towards hydrolysis of NaBH4 was tested using a flow reactor under ambient conditions in an autothermal manner. The characterization results show that Pt nanoparticles are highly dispersed on the surface of the Al2O3-coated layer. A continuous and stable hydrogen generation can be obtained by feeding the reactant (10 wt% NaBH4–5 wt % NaOH) into the tube reactor loaded with the monolithic catalyst at feed rates of 0.5–2.0 mL min−1.  相似文献   

17.
Monometallic (Co) and bimetallic (Co-Ni and Co-Cu) oxides catalysts supported on the almond based activated carbon (AC) were prepared by the heterogeneous deposition-precipitation method. The activity of these catalysts was evaluated as a function of reaction temperature, NaOH, and NaBH4 concentration. Several analysis methods including XRD, XPS, FTIR, TEM, FESEM, ICP-OES, and BET were applied to characterize the structure of prepared samples. Well-dispersed supported bimetallic nano-catalysts with the size of particles below 20 nm were formed by using nickel and copper oxides as a promoter which was confirmed by XRD and TEM techniques. Surface composition of alloy and core-shell cobalt-nickel oxides catalysts was analyzed by ICP-OES which was in a good agreement with nominal content during catalyst preparation. The performance of bimetallic cobalt-nickel oxides catalysts indicated the synergic effect between cobalt and nickel in comparison with monometallic and bimetallic cobalt-copper samples for hydrogen production. Maximum hydrogen generation rate was measured for the supported core-shell catalyst as named Ni1/Co3/AC. The reaction rate increased with increasing the temperature of the alkaline solution as a significant parameter while other operating conditions were kept constant. The optimal values for NaOH and NaBH4 content were calculated to be 10 wt % for both variables at 30 °C. Hydrogen production rates were calculated to be 252.0, 310.8 and 658.8 mL min?1.g?1 by applying Co3/Ni1/AC, Co3-Ni1/AC (alloy) and Ni1/Co3/AC at 30 °C in 5 wt % NaBH4 and 5 wt % NaOH solutions, respectively. Obtained activation energy (50 kJ mol?1) illustrated that the suitable catalysts were synthesized for hydrogen generation. The experimental study showed that the hydrolysis of NaBH4 was a zero-order type reaction with the respect to the sodium borohydride concentration. A semi empirical kinetic model was derived at the various temperatures and NaOH concentrations.  相似文献   

18.
Hydrogen production via chemical processes has gained great attention in recent years. In this study, Co-based complex catalyst obtained by adsorption of Co metal to Amberlite IRC-748 resin and Diaion CR11 were tested for hydrogen production from alkaline NaBH4 via hydrolysis process. Their catalytic activity and microstructure were investigated. Process parameters affecting the catalytic activity, such as NaOH concentration, Co percentage and catalyst amount, as well as NaBH4 concentration and temperature were investigated. Furthermore, characteristics of these catalysts were carried out via SEM, XRD and FT-IR analysis. Hydrogen production rates equal to 211 and 221 ml min−1 gcat−1 could be obtained with Amberlite IRC-748 resin and Diaion CR11 Co based complex catalysts, respectively. The activation energies of the catalytic hydrolysis reaction of NaBH4 were calculated as 46.9 and 59.42 kJ mol−1 for Amberlite IRC-748 resin and Diaion CR11 based catalysts respectively kJ mol−1 from the system consisting of 3% Co, 10 wt% NaBH4 and 7 wt% NaOH as well as 50 mg catalyst dosage. It can be concluded that Co-based resins as catalysts for hydrogen production is an effective alternative to other catalysts having higher rate.  相似文献   

19.
In this study, 5-amino-2, 4-dichlorophenol-3, 5-ditertbutylsalisylaldimine-Ni complex catalyst is synthesised and used as an alternative to previous studies to produce hydrogen from hydrolysis of sodium borohydride. The resulting complex catalyst is characterised by XRD, XPS, SEM, FT-IR and BET surface area analyses. Experimental works are carried out at 30 °C with 2% NaBH4, 7% NaOH and 5 mg of catalyst. The maximum hydrogen production rate from hydrolysis of sodium borohydride with nickel-based complex catalyst compared to the pure nickel catalyst is increased from 772 ml min?1g?1 to 2240 ml min?1g?1 by an increase of 190%. At the same time, the hydrolysis reaction with pure nickel catalyst is completed in 145 min while the hydrolysis reaction with nickel-based complex catalyst is completed in 50 min. The activation energy of this hydrolysis reaction was calculated as 18.16 kJ mol?1. This work also includes kinetic information for the hydrolysis of NaBH4.The reusability of the nickel-based complex catalyst used in this study has also been studied. The nickel-based complex catalyst is maintained the activity of 72% after the sixth use, compared to the first catalytic use.  相似文献   

20.
Multiwalled carbon nanotubes supported cobalt–boron catalysts (Co–B/MWCNT) were developed via the chemical reduction of aqueous sodium borohydride with cobalt chloride for catalytic hydrolysis of alkaline NaBH4 solution. The hydrogen generation (HG) rates were measured on an improved high-accuracy, low-cost and automatic HG rate measurement system based on the use of an electronic balance with high accuracy. The HG of Co–B/MWCNT catalyst was investigated as a function of heat treatment, solution temperature, Co–B loading and supporting materials. The catalyst was mesoporous structured and showed lower activation energy of 40.40 kJ mol−1 for the hydrolysis of NaBH4. The Co–B/MWCNT catalyst was not only highly active to achieve the average HG rate of 5.1 l min−1 g−1 compared to 3.1 l min−1 g−1 on Co–B/C catalyst under the same conditions but also reasonably stable for the continuous hydrolysis of NaBH4 solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号