首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2023,49(18):29808-29819
Phase change materials (PCMs) are prospective energy materials that are widely applied in building energy conservation, waste heat recovery, infrared stealth technology and solar dynamic power system. The enhancement of heat transfer and leak-proof performance are critical to PCMs. Although geopolymers have been applied in thermal energy storage, meanwhile, hierarchically porous geopolymers have already shown superb performance in various functional applications, to the authors’ knowledge, no report concerning the application of hierarchical porous ones have been issued. This paper concerns the preparation of a shape-stabilized composite PCMs, consisting of hierarchically porous kaolinite-based geopolymer (PKG) embedding polyethylene glycol 4000 (PEG4000), which shows promising prospects in thermal energy storage. Optimized porous geopolymer matrices feature high porosity (>83%), combined with high specific surface area (4.7 m2/g) and thermal conductivity (TC, 1.324 W·m−1·K−1). Furthermore, the shape-stabilized composite PCMs show excellent thermal energy storage properties: loading rate of 80.93 wt%, latent heat of 168.80 J g−1 and TC of ∼0.36 W·m−1·K−1 at 20–30 °C, which is 1.64 times of the TC of pure PEG4000. Finally, the photothermal conversion performances of the shape-stabilized composite PCMs were also simulated.  相似文献   

2.
This paper deals with the preparation, characterization, thermal properties and thermal reliability of novel form-stable composite phase change materials (PCMs) composed of eutectic mixtures of fatty acids and expanded vermiculite for thermal energy storage. The form-stable composite PCMs were prepared by incorporation of eutectic mixtures of fatty acids (capric–lauric, capric–palmitic and capric–stearic acids) within the expanded vermiculite by vacuum impregnation method. The composite PCMs were characterized by SEM and FTIR techniques. Thermal properties of the composite PCMs were determined by differential scanning calorimeter (DSC) method. DSC results showed that the melting temperatures and latent heats of the prepared composite PCMs are in the range of 19.09–25.64 °C and 61.03–72.05 J/g, respectively. The thermal cycling test including 5000 heating and cooling process was conducted to determine the thermal reliability of the composite PCMs. The test results showed that the composite PCMs have good thermal reliability and chemical stability. Furthermore, thermal conductivities of the composite PCMs were increased by adding 10 wt% expanded graphite. Based on all results, the prepared form-stable composites can be considered as promising PCMs for low temperature thermal energy storage applications due to their satisfactory thermal properties, good thermal reliability, chemical stability and thermal conductivities.  相似文献   

3.
The working electronic devices and batteries generate a lot of heat, if this heats not release quickly, it will not only have a great impact on the performance of the devices, but also cause certain safety hazards. The passive thermal management based on organic phase change materials (PCMs) stands out due to its excellent temperature regulation capability as well as the buffer protection capability for device overload. In view of these, a series of flexible EVA/EG@PW (EE@P) phase change composites (PCCs) with high thermal conductivity are prepared by efficiently constructing porous skeletons and thermal conductive pathways through sacrificial template method, and introducing paraffin wax (PW) by simple vacuum impregnation technique. The PCC exhibits high thermal conductivity (2.6 W m−1 K−1), high enthalpy (153.5 J g−1), and good flexibility. In addition, the PCC possesses excellent cycling stability and thermal stability. In practical application, the PCC shows good temperature control ability for LED and shows great potential application in the field of thermal management.  相似文献   

4.
何媚质  杨鲁伟  张振涛 《化工进展》2018,37(12):4709-4718
有机相变材料具有过冷度小、无相分离、蓄热强等优势,在相变储热领域一直受到广泛的关注。然而,较低的热导率、液相泄漏和较差的热稳定性成为限制其应用的瓶颈缺陷。近几年,有机-无机复合相变材料的研究成为新的热点,极大地促进了有机相变材料的应用和发展。本文综述了常见的提高有机相变材料导热性能的高导热性纳米材料,以及制备有机-无机定形复合相变材料常选用的多孔支撑材料,并从制备方法、作用方式和热物性等方面介绍了有机-无机复合相变材料,复合相变材料相比于单一纯相变材料具有诸多优越的性能。预测有关结构优化、封装工艺并与高效储能系统结合的研究会成为有机-无机复合相变材料未来的发展趋势。  相似文献   

5.
L. Xia  R.Z. Wang 《Carbon》2010,48(9):2538-2548
Expanded graphite (EG)/paraffin composite phase change materials (PCMs), with mass fraction of EG varying from 0 to 10 wt.%, were prepared and characterized. Polarizing optical microscope investigation showed that compact EG networks formed gradually with increase in the mass fraction of EG. These networks provided thermal conduction paths which enhanced the thermal conductivity of the composite PCMs, e.g., an addition of 10 wt.% EG resulting in a more than 10-fold increase in the thermal conductivity compared to that of pure paraffin. Thermal characterization of the composite PCMs with a differential scanning calorimeter (DSC) revealed the effect of the porous EG on the phase change behavior of paraffin. The shifts in the phase change temperatures were observed. The maximum deviation of the melting/freezing points of the composite PCMs from that of pure paraffin was 1.2 °C whereas that of the peak melting/freezing temperature was 5.6 °C. The DSC investigation also showed an anomaly in the latent heat of the paraffin in the composite PCMs in that it first increased and then decreased with increase in the EG fraction. Heat storage/retrieval tests of the composite PCMs in a latent thermal energy storage system showed that the heat storage/retrieval durations for EG(10)/paraffin(90) composite were reduced by 48.9% and 66.5%, respectively, compared to pure paraffin, which indicated a great improvement in the heat storage/retrieval rates of the system.  相似文献   

6.
The employment of solar energy in recent years has reached a remarkable edge. It has become even more popular as the cost of fossil fuel continues to rise. Energy storage system improves an adjustability and marketability of solar thermal and allowing it to produce electricity in demand. This study attempted to prepare cordierite/mullite composite ceramics used as solar thermal storage material from calcined bauxite, talcum, soda feldspar, potassium feldspar, quartz, and mullite. The thermal physical performances were evaluated and characterized by XRD, SEM, EPMA, and EDS. It was found that the optimum sintering temperature was 1280°C for preparing, and the corresponding water adsorption was 11.25%, apparent porosity was 23.59%, bulk density was 2.10 mg·cm?3, bending strength was 88.52 MPa. The residual bending strength of specimen sintered at 1280°C after thermal shock of 30 times decreased to be 57 MPa that was 36% lower than that before. The thermal conductivity of samples sintered at 1280°C was tested to be 2.20 W·(m·K)?1 (26°C), and after wrapped a PCM (phase change materials) of K2SO4, the thermal storage density was 933 kJ·kg?1 with the temperature difference (ΔT) ranged in 0‐800°C. The prepared cordierite/mullite composite ceramic was proved to be a promising material for solar thermal energy storage.  相似文献   

7.
《Ceramics International》2022,48(22):32748-32756
Polymeric composites with low density and high thermal conductivity (TC) are greatly demanded in some specific applications such as aeronautics, astronautics, and deep-sea exploration. It is a great challenge to obtain lightweight and thermally conductive polymer composites because the heat fillers have high density (>2 g/cm3) Herein, lightweight and thermally conductive thermoplastic polyurethane/hollow glass bead/boron nitride composites (TPU/HGB/BN) were prepared with the construction of a 3D BN network under the assistance of ultralightweight HGB by a solution-mixing and hot-pressing method. A 3D BN heat network has been constructed in the TPU matrix due to the alignment of the BN platelets along with the HGB microspheres during hot-pressing, which leads to a higher TC (5.34 W/mK) of the TPU/HGB/BN composites with a low density of 1.23 g/cm3, which is close to the density of pure TPU (1.20 g/cm3). In addition, the TPU/HGB/BN composites show good thermal stability with TC losses of 4.24% and 2.22%, respectively, even after treated for 50 hot-cold cycles and heated at 80 °C for 50 h. Moreover, the limiting oxygen index (LOI) of the TPU/HGB/BN composites is 51%, and they can extinguish in 8 s after ignition and exhibit enhanced flame retardancy. This work presents a simple method to design and prepare lightweight, flame retardant and thermally conductive composite materials, which can be used as lightweight thermal management materials.  相似文献   

8.
相变材料(PCMs)作为潜热储存和释放的介质,能够解决热能供需矛盾,从而缓解能源危机。纯相变材料具有能量密度高、温度范围广、能量输出稳定性强等优点,但其热导率低和在相变过程发生渗漏的缺点阻碍了其广泛的应用和发展。通过将PCMs与二维纳米片复合,PCMs热导率低和渗漏问题被有效解决。通过在导热机理方面进行详细阐述的基础上,综述了近几年来有关碳基二维纳米片、六方氮化硼(h-BN)纳米片、二硫化钼等复合储热材料的研究进展,为高性能二维纳米片基复合PCMs的设计提供一定的研究思路。  相似文献   

9.
Ceramic composites are widely used in medium/high temperature thermal energy storage (TES) and catalysis. Due to the high latent heat of phase change materials (PCMs), it is an effective method to improve the TES capacity by combining PCMs with ceramic materials. However, PCMs are easy to leak after being heated, so they need to be microencapsulated. Furthermore, for porous ceramic catalytic composites, the leakage of PCMs will block the pores, which seriously hinders their application. In this paper, a novel microencapsulated phase change material (MEPCM) with thermal expansion void was prepared using “double-layer coating, sacrificing inner layer” method. Based on that, two kinds of ceramic composites have been prepared. One is a TES material which composed of alumina, glass frit (GF) and MEPCMs. Thermal analysis results showed that the composite can still maintain stable heat storage performance after 200 melting-solidification cycles with little latent heat loss. Another is a multifunctional porous composite phase change material (CPCM) by loading Ce and Mn as catalyst via solution combustion synthesis (SCS) method, which can be used in low temperature SCR catalysis and other catalytic fields (100–300 °C). Based on MEPCMs with thermal expansion void, the two ceramic composites show great potential in energy storage and catalysis.  相似文献   

10.
A composite was prepared by in-situ polymerization of liquid crystal epoxy (LCE4) with a low dielectric and high thermal conductivity boron nitride (BN) filler, which the filler (f-BN) was surface-functionalized by γ-glycidoxypropyltrimethoxysilane (KH560) and aminopropylisobutyl polyhedral oligomeric silsesquioxane (NH2-POSS). The surface-functionalized BN was more uniformly dispersed in LCE4, which improved the interfacial compatibility between inorganic and organic phases. Compared with pure LCE4, KH560, and NH2-POSS modified f-BN/LCE4 composites exhibited a higher glass transition temperature, better thermal stability, and higher thermal conductivity. For example, when the f-BN content reached 30 wt%, the energy storage modulus of the composite increased to 2580 MPa, and the glass transition temperature was 103°C. The thermal conductivity of this 30 wt% f-BN composite was 0.48 W m−1 K−1, 128.6% higher than that of pure LCE4. In addition, thermal stability, low hygroscopicity, and dielectric properties of the composites were characterized and analyzed to explore the application prospects of f-BN/LCE4 composites in electronic packaging and in high-performance microelectronic devices.  相似文献   

11.
《Ceramics International》2023,49(19):31175-31182
The rapid development of microelectronic integration technology is placing increasing demands on the safety performance of electronic devices. Excellent thermal interface materials (TIM) facilitate the dissipation of heat from electronic components, which ensures the safety of electronic equipment. In this work, a three-dimensional (3D) thermally conductive framework is constructed from carbon fibers to form silicon carbide (SiC) in situ. This is followed by vacuum impregnation with paraffin wax (PW) to produce phase change composites (PCCs). The results show that the SiC-based 3D thermally conductive framework has a hierarchical porous network structure, and the PCC indicates enhanced thermal conductivity and good anti-leakage properties. The thermal conductivity of PW @ CF1–Si1-1550 is 0.81 W K−1m−1, which is 4 times that of PW. In addition, the PCC also shows good thermal cycling properties, high thermal storage capacity (179.06 Jg-1), and good insulation properties. The PCC as described in this paper as TIM have considerable application potential in thermal management.  相似文献   

12.
《Ceramics International》2022,48(4):4722-4731
In recent years, phase change material emulsions (PCMEs) with enhanced energy storage capacities and good flow characteristics have drawn significant attention. However, due to the thermodynamically unstable nature and tiny particle confinement, the nanomaterial modification strategies at PCM/water interface to improve stabilities and reduce supercooling of nano-sized PCMEs (NPCMEs) are very limited and challenging. Herein, we report a facile strategy for constructing MXene-decorated NPCME with good stability, little supercooling, and high thermal conductivity by self-assembly of MXene nanosheets at PCM/water interface. The concentrations of MXene have great influences on the average droplet diameters, stabilities, and thermophysical properties of the NPCMEs. The results show that the PCMs have been well dispersed into the water in the form of quasi-spherical droplets, with average droplet diameters of 242–805 nm. The thermal conductivity of 10 wt% n-tetradecane/water NPCME containing 9 mg ml-1 MXene is 0.693 W m-1·K-1, achieving an enhancement by 15.5%, as compared to that of water. Besides, the MXene-decorated paraffin/water NPCMEs exhibit little supercooling and enhanced heat storage capacities. More importantly, this facile self-assembly strategy opens a new platform for preparing high-performance NPCMEs, which can be used as novel heat transfer fluids for thermal energy storage systems.  相似文献   

13.
空调用纳米有机复合相变蓄冷材料制备与热物性   总被引:2,自引:2,他引:0       下载免费PDF全文
武卫东  唐恒博  苗朋柯  张华 《化工学报》2015,66(3):1208-1214
针对目前空调用有机相变蓄冷材料热导率低的问题,将具有高导热性的纳米材料(MWNTs、Al2O3、Fe2O3)添加到所开发制备的二元复合有机蓄冷材料(质量比73.7:26.3的辛酸/肉豆蔻醇)中,从纳米材料的种类和浓度两方面,研究其对复合有机蓄冷材料热物性的影响。实验发现:对于MWNTs、Al2O3、Fe2O3 3种纳米材料,当其质量分数分别小于0.3%、0.4%、0.8%时,对应纳米复合材料热导率随纳米材料浓度的增加幅度较为明显;与原二元复合有机相变蓄冷材料相比,添加0.3%的MWNTs,热导率提高26.3%;添加0.4%的Al2O3,热导率提高13.1%;添加0.8%的Fe2O3,热导率提高32.1%;当在一定纳米材料质量分数(如0.7%)下,加入纳米颗粒的复合材料导热性能效果依次为Fe2O3>MWNTs>Al2O3。不同纳米粒子的添加对原蓄冷材料的相变温度和相变潜热影响很小,相变温度变化波动最大为0.4℃,相变潜热变化波动范围最大为1.4%。  相似文献   

14.
A solar thermal energy storage material was prepared from expanded vermiculite (EVM) and paraffin by vacuum impregnation. Samples were characterized by thermogravimetric and differential scanning calorimetry (TG‐DSC), X‐ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), scanning electron microscopy (SEM), petrographic analysis, and thermal conductivity measurements. The results indicated that EVM existed as a phlogopite structure in the EVM/paraffin composite. The composite latent heat was 137.6 J/g at the freezing temperature of 52.5°C and 135.5 J/g at the melting temperature of 48.0°C, when the paraffin content was 67%. The phlogopite structure of EVM benefited paraffin heat transfer because the composite exhibited a thermal conductivity of 0.545 W·(m·K)?1 higher than that of paraffin. Morphology and structural changes of EVM during composite preparation were investigated. The composite exhibited excellent thermal stability and has potential application in solar thermal energy storage and solar heating.  相似文献   

15.
《Ceramics International》2022,48(10):14098-14106
Transitional metal selenides are considered as potential anode candidates for sodium-ion batteries (SIBs) because of their relatively high theoretical capacity and environmental benign. However, the large volume change derived from the conversion reaction and the sluggish kinetics due to the inherent low electrochemical conductivity hinder their practical application. Herein, composite materials of NiSe2 encapsulated in nitrogen-doped TiN/carbon nanoparticles with carbon nanotubes (CNTs) on the surface (NiSe2@N-TCP/CNTs) are fabricated via pyrolysis and selenization processes. In this composite, TiN inside the carbon matrix can enhance the conductivity and structural stability. CNTs that are in-situ grown on the surface not only further enhance the conductivity of the composites, but also offer sufficient space to buffer the volume expansion and alleviate serious aggregation of NiSe2 nanoparticles. Benefit from these merits, the NiSe2@N-TCP/CNTs showed a lower charge transfer resistance and a faster Na+ diffusion rate than materials without growing CNTs. When used as the anode of SIBs, the NiSe2@N-TCP/CNTs electrode delivered a reversible capacity of 344.0 mAh g?1 after 1000 cycles at 0.2 A g?1, and still maintained at 272.7 mAh g?1 even at a high current density of 2 A g?1. The remarkable electrochemical performance is mainly attributed to the special designed hierarchical structures and pseudocapacitance sodium storage behavior.  相似文献   

16.
以聚乙二醇(PEG)为相变组分,膨胀石墨(EG)为支撑材料,采用真空浸渍的方法制备了PEG/EG电热转换相变储能材料。改变复合相变材料中EG的质量分数,探究其在电热转换与热能存储效率、定形效果、相变焓值、储放热速率等方面的作用。结果表明,EG不仅能够提高复合相变材料的导热性能,还赋予其导电性能。当EG质量分数为5%时,PEG/EG复合相变材料具有良好的电热转换性能,在外加电压为7 V时,其电热转换与热能存储效率达到80.6%。同时,复合相变材料表现出良好的定形效果、较高的相变焓值(152.2 J/g)和优异的导热性能,与纯PEG相比,其储热所用时间减少了73%,储放热速率大幅提高。因此,PEG/EG复合相变材料在电驱动热能存储系统和能量转换与存储等领域具有广阔的应用前景。  相似文献   

17.
《Ceramics International》2015,41(8):9488-9495
The ceramic/polymer composites based on epoxy-terminated dimethylsiloxane (ETDS) and boron nitride (BN) were prepared for use as thermal interface materials (TIMs). 250 µm-sized BN was used as a filler to achieve high-thermal-conductivity composites. To improve the interfacial adhesion between the BN particles and the ETDS matrix, the surface of BN particles were modified with silica via the sol–gel method with tetraethyl orthosilicate (TEOS). The interfacial adhesion properties of the composites were determined by the surface free energy of the particles using a contact angle test. The surface-modified BN/ETDS composites exhibited thermal conductivities ranging from 0.2 W/m K to 3.1 W/m K, exceeding those of raw BN/ETDS composites at the same weight fractions. Agari׳s model was used to analyze the measured thermal conductivity as a function of the SiO2-BN concentration. Moreover, the storage modulus of the BN/ETDS composites was found to increase with surface modification of the BN particles.  相似文献   

18.
Improvements in the thermal conductivity and shape-stability of paraffin phase change materials (PCMs) by adding exfoliated graphite nanoplatelets (xGnP) or graphene were compared. The composite PCMs were fabricated by mixing paraffin with xGnP or graphene in hot toluene, followed by solvent evaporation and vacuum drying. A larger increase in thermal conductivity was observed for paraffin/xGnP, with a 10 wt.% xGnP loading producing a more than 10-fold increase. Graphene shows a lower electrical percolation threshold and offers a much larger increase in the electrical conductivity of paraffin than xGnP. However, its thermal conductivity increase is much lower. Despite the excellent thermal conductivity of single-flake graphene, the large density of nanointerfaces due to the small size of the graphene flakes significantly impedes heat transfer. We also found that graphene is much more effective than xGnP as a shape-stabilizing filler. At 2 wt.% graphene loading, paraffin maintains its shape up to 185.2 °C, well above the operating temperature range of paraffin PCMs, while the paraffin/xGnP counterpart is shape-stable up to 67.0 °C only. Small amounts of graphene and xGnP can be used in combination as a low-cost and effective improver for both the heat diffusion and shape-stabilization of paraffin PCMs.  相似文献   

19.
《Ceramics International》2023,49(4):6479-6486
Thermal protection has always been an important issue in the energy, environment and aerospace fields. Porous ceramics produced by the particle-stabilized foaming method have become a competitive material for thermal protection because of their low density and low thermal conductivity. However, the study of porous ceramics for composite systems using particle-stabilized foaming method was relatively rare. Here, silica-alumina composite porous ceramics were prepared by particle-stabilized foaming method, which was achieved by tailoring the surface charges of silica and alumina through adjustment of the pH. Porous ceramics exhibited porosity as high as 97.49% and thermal conductivity (25 °C) as low as 0.063 W m?1 K?1. The compressive strength of porous ceramics sintered at 1500 °C with a solid content of 30 wt% could reach 0.765 MPa. Based on the light weight and excellent thermal insulation properties, the composite porous ceramic could be used as a potential thermal insulation material in the spacecraft industry.  相似文献   

20.
The microstructure, thermal conductivity, and electrical properties of pressureless densified SiC–BN composites prepared from in situ reaction of Si3N4, B4C, and C were systematically investigated, to achieve outstanding performance as substrate materials in electronic devices. The increasing BN content (0.25–8 wt%) in the composites resulted in finer microstructure, higher electrical resistivity, and lower dielectric constant and loss, at the expense of only slight degradation of thermal conductivity. The subsequently annealed composites showed more homogeneous microstructures with less crystal defects, further enhanced thermal conductivities and electrical resistivities, and reduced dielectric constants and losses, compared with the unannealed ones. The enhanced insulating performance, the weakened interface polarization, and the reduced current conduction loss were explained by the gradual equalization of dissolved B and N contents in SiC crystals and the consequent impurity compensation effect. The schottky contact between graphite and p‐type SiC grains presumably played a critical role in the formation of grain‐boundary barriers. The annealed composites doped with 8 wt% BN exhibited considerably high electrical resistivity (4.11 × 1011 Ω·cm) at 100 V/cm, low dielectric constant (16.50), and dielectric loss (0.127) at 1 MHz, good thermal conductivity [66.06 W·(m·K)?1] and relatively high strength (343 MPa) at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号