首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, significant research and development efforts were spent on hydrogen storage technologies with the goal of realizing a breakthrough for fuel cell vehicle applications. This article scrutinizes design targets and material screening criteria for solid state hydrogen storage. Adopting an automotive engineering point of view, four important, but often neglected, issues are discussed: 1) volumetric storage capacity, 2) heat transfer for desorption, 3) recharging at low temperatures and 4) cold start of the vehicle. The article shall help to understand the requirements and support the research community when screening new materials.  相似文献   

2.
The problem of solid state hydrogen storage   总被引:2,自引:0,他引:2  
A short review of the materials under investigation suitable for solid state hydrogen storage is presented, with particular reference to the experimental activity carried out at the laboratory of Hydrogen Group of Padova University.  相似文献   

3.
In this study, a novel set of comprehensive arithmetic correlations has been proposed to design an industrial scale cylindrical reactor with embedded cooling tubes (ECT) for metal hydride (MH) based hydrogen storage and thermal management applications. Based on ASME standards, different nominal pipe sizes were imparted into a cylindrical reactor design with ECT to accommodate 50 kg of LaNi4.7Al0.3 alloy. A three dimensional numerical model has been developed using COMSOL Multiphysics 4.3a to predict the hydriding performance of designed reactors, which was further experimentally validated as well. At an absorption condition of 30 bar supply pressure and 298 K absorption temperature with 60 lpm volumetric HTF flow rate, 6 inch reactor with 99 ECT portrayed better heat transfer characteristics. From the parametric investigation, it is observed that the variation of supply pressure has predominant effect followed by the variation of the HTF flow rate on hydriding (absorption) kinetics of the device. However, the variation of absorption temperature has minuscule influence on the hydriding performance. At a supply condition of 30 bar and 298 K with water flow rate of 30 lpm, a hydrogen storage capacity (HSC) of 1.29 wt% was achieved within 2060 s.  相似文献   

4.
Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems.  相似文献   

5.
Several mixtures of LiBH4 and Mg(BH4)2 borohydrides in different stoichiometric ratios (1:0, 2:1, 1:1, 1:2, 0:1), prepared by high energy ball milling, have been investigated with X-ray powder diffraction and thermal programmed desorption (TPD) volumetric analysis to test the dehydrogenation kinetics in correlation with the physical mixture composition. Afterwards mixed and unmixed borohydrides were dispersed on high specific surface area ball milled graphite by means of the solvent infiltration technique. BET and statistical thickness methods were used to characterize the support surface properties, and SEM micrographs gave a better understanding of the preparation techniques. It has been observed by TPD volumetric measurements that the confinement of the reactive borohydrides on the nanoporous supports leads to a lower dehydrogenation temperature compared to unsupported borohydrides. Moreover, a further decrease of the dehydrogenation temperature has been observed by increasing the specific surface area of the support and the pores volume and by using the prepared mixtures instead of pure materials. The dehydrogenation process seems to be favoured by the heterogeneous nucleation on the graphite surface of decomposition products or intermediate phases from melted liquid borohydrides.  相似文献   

6.
7.
The global climate and environmental crisis dictate the need for the development and implementation of environmentally friendly and efficient technical solutions, for example, generation based on renewable energy sources. However, the annually increasing demand for electricity (according to the forecasts of the U.S. Energy Information Administration, the amount of energy consumed for the period 2006–2030 will increase by 44 %) cannot be fully provided by alternative energy. The main reason is not so much the high cost of these technologies, like unstable power generation, which determines the need for an additional reserve of regulated power.The solution to this problem can be the combined use of generation based on renewable energy sources with energy storage units of large capacity. Currently, a promising direction is the use of excess electricity for the production of hydrogen and its further accumulation in hydrogen storage. In this case an additional energy can be generated using industrial fuel cells (electrochemical generators) to compensate for the power shortage.At the same time, the distinctive advantage of hydrogen energy storage systems lies in the ability to accumulate a large amount of energy for long periods of time. This fact makes it possible to increase the reliability of the functioning of the electric power system, to provide power supply with a sufficiently long interruption (in case of faults) or allocation for isolated operation.With an increase in the unit capacity and the share of renewable generation in the total installed capacity, researches that aimed to systematic analysis of the impact of the implemented generation unit and the energy storage system on the parameters of the mode of the electric power system become more relevant. There are a number of tasks can be noted related to determining the optimal location and size of the generation unit and energy storage systems being implemented in terms of reducing power losses and maintaining an appropriate voltage level in the nodes of the electric power system. In this article, a variant of solving the optimization task for a typical 15-bus IEEE scheme is presented by means of software calculation using the bubble sorting method. To achieve this goal, the following tasks were solved: the objective function, which indicates the optimal location and size of the generation unit, and constraints, for example, the available deviation of voltage level, were formed; the software implementation of the algorithm for calculating power flows and power losses using the bubble sorting method was carried out. The results of the work of the program code for two scenarios are presented: for instance, installation of one renewable generation unit with a different range of possible capacities, and are compared with the data obtained in the MATLAB/Simulink software package.  相似文献   

8.
The absorption and desorption performances of a solid state (metal hydride) hydrogen storage device with a finned tube heat exchanger are experimentally investigated. The heat exchanger design consists of two “U” shaped cooling tubes and perforated annular copper fins. Copper flakes are also inserted in between the fins to increase the overall effective thermal conductivity of the metal hydride bed. Experiments are performed on the storage device containing 1 kg of hydriding alloy LaNi5, at various hydrogen supply pressures. Water is used as the heat transfer fluid. The performance of the storage device is investigated for different operating parameters such as hydrogen supply pressure, cooling fluid temperature and heating fluid temperature. The shortest charging time found is 490 s for the absorption capacity of 1.2 wt% at a supply pressure of 15 bar and cooling fluid temperature and velocity of 288 K and 1 m/s respectively. The effect of copper flakes on absorption performance is also investigated and compared with a similar storage device without copper flakes.  相似文献   

9.
Storing energy in the form of hydrogen is a promising green alternative. Thus, there is a high interest to analyze the status quo of the different storage options. This paper focuses on the large-scale compressed hydrogen storage options with respect to three categories: storage vessels, geological storage, and other underground storage alternatives. In this study, we investigated a wide variety of compressed hydrogen storage technologies, discussing in fair detail their theory of operation, potential, and challenges. The analysis confirms that a techno-economic chain analysis is required to evaluate the viability of one storage option over another for a case by case. Some of the discussed technologies are immature; however, this does not rule out these technologies; rather, it portrays the research opportunities in the field and the foreseen potential of these technologies. Furthermore, we see that hydrogen would have a significant role in balancing intermittent renewable electricity production.  相似文献   

10.
On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H2 to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2–4 and 1.6–2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.  相似文献   

11.
Hydrogenation properties and mechanical stability of pellets made starting from compressed ball-milled MgH2 powders mixed with catalysts (Nb2O5 and graphite) and a binding agent (aluminium powder) have been investigated. Structural characterization with X-ray diffraction and gas–solid reaction kinetic and thermodynamic tests with a Sievert's apparatus have been done on the samples up to 50 hydrogen absorption/desorption (a/d) cycles. The best cycling behaviour and mechanical strength stability have been observed for pellets of catalysed MgH2 powders added with 5 wt% aluminium annealed in vacuum at 450 °C before starting the a/d cycles. This mechanical stability to cycles has been attributed to the formation of a solid solution of aluminium in magnesium.  相似文献   

12.
This paper investigates the decoration of superalkali NLi4 on graphene and the hydrogen storage properties by using first principles calculations. The results show that the NLi4 units can be stably anchored on graphene while the Li atoms are strongly bound together in the superalkali clusters. Decoration using the superalkali clusters not only solve the aggregation of metal atoms, it also provide more adsorption sites for hydrogen. Each NLi4 unit can adsorb up to 10 H2 molecules, and the NLi4 decorated graphene can reach a hydrogen storage capacity 10.75 wt% with an average adsorption energy ?0.21 eV/H2. We also compute the zero-point energies and the entropy change upon adsorption based on the harmonic frequencies. After considering the entropy effect, the adsorption strengths fall in the ideal window for reversible hydrogen storage at ambient temperatures. So NLi4 decorated graphene can be promising hydrogen storage material with high reversible storage capacities.  相似文献   

13.
System simulation models for automotive on-board hydrogen storage systems provide a measure of the ability of an engineered system and storage media to meet system performance targets. Thoughtful engineering design for a particular storage media can help the system achieve desired performance goals. This paper presents system simulation models for two different advanced hydrogen storage technologies – a cryo-adsorption system and a metal hydride system. AX-21 superactivated carbon and sodium alanate are employed as representative storage media for the cryo-adsorbent system and the metal hydride system respectively. Lumped parameter models incorporating guidance from detailed transport models are employed in building the system simulation models.  相似文献   

14.
The substitution of fossil fuels with renewable energy sources such as hydrogen is a decisive factor in making aviation environmentally compatible. A key parameter for the use of hydrogen is the storage system. In the design of a flight-capable storage system, not only the mass but especially the volume of the hydrogen has to be considered. Therefore, in this paper different techniques are compared and evaluated from the point of view of their application in aircraft design. The analyses are performed on two reference aircraft, the Airbus A320 and the Embraer E 190, in the short- and medium-haul range. Simplified, it is assumed that the respective max. Take-off mass (MTOM) remains constant. The change of the necessary periphery has no influence on the MTOM. A tank concept could be designed, which can find applications in today's conventional aircraft design.  相似文献   

15.
Detailed models for hydrogen storage systems provide essential design information about flow and temperature distributions, as well as, the utilization of a hydrogen storage media. However, before constructing a detailed model it is necessary to know the geometry and length scales of the system, along with its heat transfer requirements, which depend on the limiting reaction kinetics. More fundamentally, before committing significant time and resources to the development of a detailed model, it is necessary to know whether a conceptual storage system design is viable. For this reason, a hierarchical system of models progressing from scoping models to detailed analyses was developed. This paper, which discusses the scoping models, is the first in a two part series that presents a collection of hierarchical models for the design and evaluation of hydrogen storage systems.  相似文献   

16.
There is significant interest in hydrogen storage systems that employ a media which either adsorbs, absorbs or reacts with hydrogen in a nearly reversible manner. In any media based storage system the rate of hydrogen uptake and the system capacity is governed by a number of complex, coupled physical processes. To design and evaluate such storage systems, a comprehensive methodology was developed, consisting of a hierarchical sequence of models that range from scoping calculations to numerical models that couple reaction kinetics with heat and mass transfer for both the hydrogen charging and discharging phases. The scoping models were presented in Part I [Hardy BJ, Anton DL. Hierarchical methodology for modeling hydrogen storage systems, Part I: scoping models. Int J Hydrogen Energy 2009;34(5):2269–77.] of this two part series of papers. This paper describes a detailed numerical model that integrates the phenomena occurring when hydrogen is charged and discharged. A specific application of the methodology is made to a system using NaAlH4 as the storage media.  相似文献   

17.
This paper describes the design, fabrication and performance evaluation of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to a hydrogen storage system. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to the hydrogen storage system via a recirculating heat transfer fluid.  相似文献   

18.
A multi-technique theoretical approach was used to investigate hydrogen storage in a three-dimensional diamond-like architecture composed by interconnected carbon nanotubes (CNT). This is achieved with nodes formed by four nanotubes joined together by the inclusion of heptagonal rings placed appropriately. This novel nanoporous material, named Super Diamond has, by design, tunable pore size and exhibit large free volume and surface area, which can reach the values of 95% and 2535 g/m2 respectively. The interaction and the adsorption properties of this material with hydrogen were studied thoroughly via ab-initio and Grand Canonical Monte Carlo simulations. Our results show that a large pore Super Diamond can surpass the gravimetric capacity of 20% at 77 K and can reach the high value of 8% at room temperature.  相似文献   

19.
Al-decorated carbon nanotube as the molecular hydrogen storage medium   总被引:1,自引:0,他引:1  
Al-decorated, single-walled carbon nanotube has been investigated for hydrogen storage applications by using Density Functional Theory (DFT) based calculations. Single Al atom-decorated on (8,0) CNT adsorbs upto six H2 molecules with a binding energy of 0.201 eV/H2. Uniform decoration of Al atom is considered for hydrogen adsorption. The first Al atom has a binding energy of 1.98 eV on (8,0) CNT and it decreases to 1.33 eV/Al and 0.922 eV/Al respectively, when the number of Al atoms is increased to four and eight. Each Al atom in (8,0) CNT-8Al adsorbs four H2 molecules, without clustering of Al atoms, and the storage capacity reaches to 6.15 wt%. This gravimetric storage capacity is higher than the revised 2015 target of U.S Department of Energy (DOE). The average adsorption binding energy of H2 in (8,0) CNT-8(Al+4H2), i.e. 0.214 eV/H2, lies between 0.20 and 0.60 eV/H2 which is required for adsorbing and desorbing H2 molecules at near ambient conditions. Thus, Al-decorated (8,0) CNT is proposed as a good hydrogen storage medium which could be useful for onboard automobile applications, at near ambient conditions.  相似文献   

20.
A comparative study of the LiNH2–MgH2 hydrogen storage system has been made, and several additives (LiBH4, KH and ZrCoH3) have been tested as single catalysts and in various combinations in order to study potential synergistic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号